期刊文献+

基于区域特性的Contourlet域多聚焦图像融合算法 被引量:25

Multifocus Image Fusion Algorithm Based on Region Statistics in Contourlet Domain
下载PDF
导出
摘要 利用Contourlet变换的多尺度、局部化、方向性和各向异性等优点,提出了一种基于区域特性的Contourlet域多聚焦图像融合算法.该算法将源图像分解至Contourlet变换域,在不同尺度、不同方向的子带中结合区域特性进行图像融合,低频和高频子带中分别采用区域方差和区域能量作为融合规则,最后通过反变换得到融合图像.实验结果表明,所提出的算法能够更好地提取原始图像特征,融合后的图像具有更好的主观视觉效果,与经典的梯度金字塔算法和小波变换算法相比,新算法的均方误差最大值仅为前二者的34.8%和42.6%. Utilizing the contourlet's advantages of multiscale, localization, directionality and anisotropy, a multifocus image fusion algorithm based on region statistics in contourlet domain is developed. Source images are firstly decomposed to the domain of the contourlet transform, the image fusion is then implemented in subbands with different scale and direction combining with region statistics. Regional variance and local energy are adopted as fusion rules in lowpass and high- pass subbands, respectively. Finally the fused image is obtained through inverse transform. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect. Compared to traditional gradient pyramid algorithm and wavelet based algorithm, the maximum of mean square error of the proposed algorithm is only 34. 8% and 42.6% of the formers, respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第4期448-452,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60572152) 陕西省自然科学基金资助项目(2005F26)
关键词 图像融合 CONTOURLET变换 多聚焦 区域能量 image fusion contourlet transform multifocus local energy
  • 相关文献

参考文献3

二级参考文献18

  • 1[1]Varshney P K. Multisensor data fusion [J]. Electronics & Communication Engineering Journal, 1997, 9(6): 245~253.
  • 2[2]Burt P J, Kolczynski R J. Enhanced image capture through fusion [A]. The Fourth International Conference on Computer Vision, Berlin, Germany, 1993.
  • 3[3]Toet A. Multiscale contrast enhancement with applications to image fusion [J]. Optical Engineering, 1992, 31(5): 1 026~1 031.
  • 4[4]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
  • 5[5]Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Processing, 1995, 57(3): 235~245.
  • 6[6]Li S T, James T K, Wang Y N. Multifocus image fusion using artificial neural networks [J]. Pattern Recognition Letters, 2002, 23(8): 985~997.
  • 7[7]Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging, 1997, 16(2):187~198.
  • 8Burt P J, Adelson E H. The Laplacian pyramid as a compact image code[J]. IEEE Trans on Communica tions, 1983, 31(4):532-540.
  • 9Toet A. Image fusion by a ratio of low pass pyramid [J]. Pattern Recognition Letters, 1989, 9 (4) : 255-261.
  • 10Burt P J, Kolczynski R J. Enhancement with application to image fusion [A]. Proc 4th Int Conf on Computer Vision [C]. Ios Alamitos USA: IEEE Computer Society, 1993. 173-182.

共引文献109

同被引文献219

引证文献25

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部