期刊文献+

基于粒度计算的数据分类建模研究 被引量:2

Data Classification Modeling Based on Granular Computing
下载PDF
导出
摘要 基于粒度计算在理论上对数据分类问题进行建模研究。引入全粒度空间的概念,给出了集合的粒度表示、概念学习在粒度计算理论中的解释,从而得到数据分类问题的机理分析;最后导出了基于数据分类的知识发现模型,为知识发现面临的问题提供解决的理论依据,也为进一步研究奠定了重要的理论基础。 Problem of data classification was theoretically studied based on Granular Computing (GrC). Concept of AllGS (All-Granular-Space) was first introduced, and then with GrC a set of data was expressed in granulation, and concept learning was rationally explained, which lead to analysis of mechanism of data classification. At last, KDD modeling of data classification was educed, with which a theoretical basis was given to facing-problem-solving of KDD, and a solid foundation was also laid for further research.
出处 《计算机应用研究》 CSCD 北大核心 2007年第3期37-40,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60234030) 广西大学科研基金项目(DD60004) 湖南省教育厅资助项目(02C589)
关键词 数据分类 粒度计算 数据库中的知识发现 建模 data classification granular computing KDD modeling
  • 相关文献

参考文献7

二级参考文献9

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2[1]Perng Chang-Shing, Wang Haixun, Ma Sheng, et al.User-directed explorarion of mining space with multiple attribustes [A]. In the 2nd IEEE Int Conf on Data Mining (ICDM)[C]. Maebashi, 2002. 394-401.
  • 3[2]Bayardo R J, Agrawal R. Mining the most interseting rules [A]. Proc of 5th Int ACM SIGKDD Int Conf Knowledge Discovery Data Mining [C]. San Diego,1999. 145-154.
  • 4[4]Zhao K, Wang J. A reduction algorithm meeting users′ requirements [J]. J of Computer Science and Technology, 2002, 17(5): 578-593.
  • 5Jiawei Han,Micheline Kamber.Data Mining Concept and Techniques[M]. Higer Education Press,2001:39-95.
  • 6Pawlak Z.Rough Sets Theory and It's Applications to Data Analysis[J]. Cybernetices & Systems 1998;29:661-688.
  • 7Hobbs J R.Granularity[M].Proc of IJCAI,Los Angeles, 1985:432-435.
  • 8王珏.Rough Set约简与数据浓缩[J].高技术通讯,1997,7(11):40-45. 被引量:39
  • 9张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:207

共引文献271

同被引文献18

  • 1邓敏,李志林,程涛.多粒度的GIS数据不确定性粗集表达[J].测绘学报,2006,35(1):64-70. 被引量:18
  • 2陈传明,俞庆英.粒度计算模型的研究[J].计算机技术与发展,2006,16(12):97-99. 被引量:4
  • 3王树锋,吴耿锋,潘建国.基于粗糙集的知识粒度及粒度关系研究[J].计算机工程与应用,2007,43(14):38-41. 被引量:5
  • 4Liang J Y, Shi Z Z. The Informationentropy, Roughentropy and Knowledge Granularion in Rough Set Theory[J].International Journal of Uncertainty, Fuzziness and Knowledge Based System,2004,12(1) 37-46.
  • 5张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2005.
  • 6YAO Y Y,ZHONG Ning.Potential applications of granular computing in knowledge discovery and data mining[C]//Proc of World Multi-Conference on Systemics,Cybernetics and Informatics.[S.l.]:Computer Science and Engineering,1999:573-580.
  • 7VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 8VAPNIK V,GOLOWICH S,SMOLA A.Support vector method for function approximate,regression estimation,and signal processing[M].Cambridge:MIT Press,1997:281-287.
  • 9OSUNA E,FREUND R,GIRROSI F.Improved training algorithm for support vector machines[C]//PRINCIPLE J,GILES L,MONGAN N,et al.Proc of IEEE Workshop on Neural Networks and Signal Processing.Amelia Island:IEEE Press,1997:276-285.
  • 10PLATT J C.Fast training of support vector machines using sequential minimal optimization[M]// SCHOLKOPF B,BURGES C J C,SMOLA A J.Advances in kernel methods:support vector learning.Cambridge:MIT Press,1999:185-208.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部