期刊文献+

稀疏纹理的特征提取和分类研究 被引量:3

Sparse Texture Representation and Classification
下载PDF
导出
摘要 提出了对稀疏纹理表面特征的新描述方法,并进行了纹理分类的研究。以往对纹理的研究大多是对2D纹理的研究,一般是通过大量的训练样本来完成纹理特征的提取。通过RANSAC估计两幅纹理的单应约束,提取两幅纹理的对应点,不仅可以提取一般纹理的特征,而且可以提取包含立体信息的纹理特征(如因为光照和视点的变化引起立体纹理的阴影变化等),通过对应点的提取使得不再需要大量的训练样本来进行纹理的特征提取。实验表明该算法可以较准确和快速地进行纹理特征提取和分类,使得纹理分类工作变得有较强的可行性和实用性。 The objective of this paper was the classification of textured materials from a single image obtained under unknown viewpeint and illumination. There were a lot of papers about 2D texture, less about 3D. The author set out to develop a texture representation that was invariant to geometric transformation that can be locally approximated by an affine model. Experiments show that the algorithm has more feasibility and availability of texture classification.
出处 《计算机应用研究》 CSCD 北大核心 2007年第3期306-308,共3页 Application Research of Computers
基金 国家科技部重大基础基金资助项目(国科基字2001(51))
关键词 纹理分类 特征提取 稀疏纹理 texture classification feature measurement sparse texture
  • 相关文献

参考文献7

  • 1VARMA M, ZISSERMAN A. Unifying statistical texture classification frameworks [ J ]. Image Vision Compute. 2004,22 ( 14 ) : 1175-1183.
  • 2RANDEN T, HUSOY J. Filtering for texture classification : A comparative study[J]. IEEE Trans PAMI, 1999,21(4) :291-310.
  • 3MAO J, JAIN A: Texture classification and segmentation using multiresolution simultaneous autoregressive models[ J]. Pattern Recognition, 1992,25:173-188.
  • 4LAZEBNIK S, SCHMID C,PONCE J. A sparse texture representation using local affine regions[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 8 ) : 1265-1278.
  • 5LEUNG T, MALIK J. Representing and recognizing the visual appearance of materials using three-dimensional textons [ J ]. International Journal of Computer Vision,2001,43( 1 ) :29-44.
  • 6HARTLEY R, ZISSERMAN A. 计算机视觉中的多视图几何[ M ].韦穗,等译.合肥:安徽大学出版社,2002:79 - 82.
  • 7GXARDING J, LINDEBERG T. Direct computation of shape cues using scale-adapted spatial derivative operators [ J ]. International Journal of Computer Vision, 1996,17(2) :163-191.

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部