期刊文献+

基于统计判据的非线性维数约简

Nonlinear Dimensionality Reduction Based on Statistical Criterions
下载PDF
导出
摘要 现有非线性维数约简算法均需要人工设定适当的邻域点数k(或者邻域半ε)才能获得合理的嵌入结果.但常用的基于嵌入残差的邻域参数选择方法本质上是循环依赖的,不能有效工作.为实现非线性维数约简算法的定量评价的参数辨识,从讨论优化嵌入的基本判定原则出发,给出了基于空域互信息和正则依赖指数谱的优化嵌入判据实现嵌入质量的定量评价和非线性维数约简算法的非监督参数辨识.仿真实验表明,直观的嵌入质量可被优化嵌入判据有效反映,且由嵌入集拟合恢复原数据集时的拟合精度与优化嵌入判据之间存在显著的正相关. Popular nonlinear dimensionality reduction algorithms, e.g. LLE, Isomap and SIE, must configure neighborhood parameters in advance to gain meaningful embedding results. But current criteria of neighborhood parameters selection based on embedding residual are not independent of neighborhood parameters. Therefore it cannot work universally. To improve the availability of nonlinear dimensionality reduction algorithms in the field of self-adaptive manifold learning, the optimal embedding principles are discussed, and criteria of optimal embedding based on spatial mutual information and normalized dependency index spectrum are proposed to quantitatively evaluate embedding quality and achieve unsupervised parameters identifications. Simulation shows that intuitive embedding quality can be effectively indexed by proposed criteria, and there is a remarkably positive correlation between fitting precisions of embedding sets and criteria of optimal embedding.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2007年第1期28-34,共7页 Journal of Tianjin University(Science and Technology)
基金 天津市科技发展计划资助项目(04310941R) 天津市自然科学基金应用基础研究资助项目(05YFJMJCll700) 国家自然科学基金资助项目(60603027).
关键词 流形学习 非线性维数约简 空域互信息 正规依赖指数谱 自组织等距嵌入 优化嵌入判据 manifold learning nonlinear dimensionality reduction spatial mutual information normalized dependency index spectrum self-organizing isometric embedding criteria of optimal embedding
  • 相关文献

参考文献13

  • 1Barlow H.Unsupervised learning[J].Neural Computation,1989,1(1):295-311.
  • 2Marcus Gary.Programs of the mind[J].Science,2004,304(5676):1450-1451.
  • 3Baum Eric.What Is Thought?[M].Cambridge MA:MIT Press,2004.
  • 4Mardia K V,Kent J T,Bibby J M.Multivariate Analysis[M].London:Academic Press,1979.
  • 5Tenenbaum Joshua B.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Roweis Sam T.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290 (5500):2323-2326.
  • 7De Silva Vin,Tenenbaum Joshua.Global versus local methods in nonlinear dimensionality reduction[C]//Neural Information Processing Systems.CA,2002.
  • 8侯越先,丁峥,何丕廉.基于自组织的鲁棒非线性维数约减算法[J].计算机研究与发展,2005,42(2):188-195. 被引量:4
  • 9Li Ming,Vitanyi P M B.An Introduction to Kolmogorov Complexity and Its Applications[M].New York:Springer Verlag,1997.
  • 10Ash R.Information Theory[M].Indianapolis:John Wiley and Sons Press,1965.

二级参考文献14

  • 1C. Gomes, B. Selman, N. Crato. Heavy-tailed distributions in combinatorial search. The 3rd Int'l Conf. of Constraint Programming (CP-97), Linz, Austria, 1997.
  • 2D.E. Knuth. The Art of Computer Programming. Boston:Addison-Wesley, 1998.
  • 3H. Kantz, T. Schrelber. Nonlinear time series analysis.Cambridge: Cambridge University Press, 1997.
  • 4Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms,2nd edition. United States: MIT press, 2001.
  • 5David L. Donoho, et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 2003, 100(10): 5591~ 5596.
  • 6Joshua B. Tenenbaum, et al. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319~2323.
  • 7Sam T. Roweis, et al. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290 (5500): 2323 ~2326.
  • 8M. Belkin, et al. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS, Vancouver, Canada, 2001.
  • 9V. de Silva, et al. Global versus local methods in nonlinear dimensionality reduction. NIPS, Whistler/Blackcomb, Canada,2002.
  • 10Y. Saad. Projection methods for solving large sparse eigenvalue problems. In: Matrix Pencils, Lect. Notes in Math, Vol 973.Berlin: Springer-Verlag, 1983. 121 ~ 144.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部