期刊文献+

结构可靠性分析的支持向量机分类迭代算法 被引量:9

Iterative Algorithm for Structure Reliability Analysis Based on Support Vector Classification Method
下载PDF
导出
摘要 针对结构隐式极限状态函数的可靠性分析,提出了一种支持向量机分类迭代算法。该算法以分类支持向量机来替代隐式极限状态方程,通过构造合理的迭代格式,使得分类支持向量机在对失效概率贡献大的区域收敛于真实的极限状态方程,从而提高了可靠性分析的精度。给出了所提算法的详细步骤,并且用多个算例验证了所提算法的可行性及效率。 For reliability analysis of structure with implicit limit state function, an iterative algorithm was presented on the basis of support vector classification machine. In the presented method, the support vector classification machine was employed to construct surrogate of the implicit limit state function. By means of the rational iteration, the constructed support vector classification machine can converge to the actual limit state function at the important region, which contributed to the failure probability significantly, and then the precision of the reliability analysis was improved. The implementation of the presented method is given in detail, and the feasibility and the efficiency are demonstrated by the illustrations.
作者 马超 吕震宙
机构地区 西北工业大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第7期816-819,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(10572117) 新世纪优秀人才支持计划资助项目(NCET-05-0868)
关键词 结构可靠性 可靠性分析 支持向量机 隐式极限状态函数 structural reliability; reliability analysis; support vector machine; implicit limit state function
  • 相关文献

参考文献16

  • 1Bucher C G,Bourgund U.A Fast and Efficient Response Surface Approach for Structural Reliability Problems[J].Structural Safety,1990,7(1):57-66.
  • 2Rajashekhar M R,Ellingwood B R.A New Look at the Response Surface Approach for Reliability Analysis[J].Structural Safety,1993,12(3):205-220.
  • 3Kim S,Na S.Response Surface Method Using Vector Projected Sampling Points[J].Structural Safety,1997,19(1):3-19.
  • 4Guan X L,Melchers R E.Effect of Response Surface Parameter Variation on Structural Reliability Estimates[J].Structural Safety,2001,23(4):429-444.
  • 5Schueremans L,Gemert D V.Benefit of Splines and Neural Networks in Simulation Based Structural Reliability Analysis[J].Structural Safety,2005,27(3):246-261.
  • 6Hurtado J E,Alvarez D A.Neural-network-based Reliability Analysis:A Comparative Study[J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113-132.
  • 7Papadrakakis M,Lagaros N D.Reliability-based Structural Optimization Using Neural Networks and Monte Carlo Simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32):3491-3507.
  • 8Deng Jian,Gu Desheng,Li Xibing,et al.Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network[J].Structural Safety,2005,27(1):25-48.
  • 9Kaymaz I.Application of Kriging Method to Structural Reliability Problems[J].Structural Safety,2005,27(2):133-151.
  • 10Romero V J,Swiler L P,Giunta A A.Construction of Response Surfaces Based on Progressive Lattice Sampling Experimental Designs with Application to Uncertainty Propagation[J].Structural Safety,2004,26(2):201-219.

同被引文献89

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部