期刊文献+

中医脉象信号的参数化双谱估计及切片分析 被引量:1

Parametric Bispectrum Estimation and Slice Analysis for Pulse Signals in Traditional Chinese Medicine
下载PDF
导出
摘要 采用ARMA参数化双谱估计法对15例吸毒者和15例正常人的脉象信号进行了参数化双谱估计.在得到每一例脉搏波的归一化双谱幅值对角切片后,应用K-L变换得到30个样本特征向量,然后设计4-9-1的BP神经网络进行模式识别.除1例正常人被误判外,其余的受测者全部予以正确识别.研究结果表明,归一化双谱对角切片与K-L变换相结合的方法是提取中医脉象信号特征的有效方法.这种方法与BP神经网络的联合应用,对海洛因吸毒者和正常人的脉象信号具有很高的识别率. The ARMA parameterized bispectrum estimation method is used to estimate the bispectra of the pulse signals for 15 heroin addicts and 15 healthy persons. After obtaining a diagonal slice of the normalized bispeetrum magnitude for every pulse wave, K-L transform is used to get 30 sample feature vectors. Then a 4-9-1 BP neural network is successfully designed and used to the pattern classification for sample feature vectors. All subjects characterized by the feature vectors, except for one normal person, are identified correctly. The research result shows that the method of the diagonal slice of the normalized bispectrun magnitude and K-L transform is an effective method for extracting features from Chinese pulse signals. The application of this method associated with BP neural network has a high identification rate.
出处 《重庆工学院学报》 2007年第5期5-9,共5页 Journal of Chongqing Institute of Technology
基金 重庆市自然科学基金资助项目(CSTC 2004BB5061)
关键词 脉象信号 参数化双谱估计 K—L交换 BP网络 pulse signal paraneterized bispectrun estimation K-L transformation BP neural network
  • 相关文献

参考文献8

  • 1Nikias C L, Petroplus A P. Higher-order Spectra Analysis[M]. Enghwood Cliffs: Prentice Hall, 1993.
  • 2沈民奋,沈凤麟.非高斯AR模型及其在心音信号分析中的应用[J].信号处理,1997,13(3):250-255. 被引量:6
  • 3刘毅,张彩明,冯峰,李圣君.基于高阶累积量的参数化双谱分析的肺音特征提取[J].山东大学学报(工学版),2005,35(2):77-85. 被引量:9
  • 4Swami A, MENDEL J M. ARMA parameter estimation using only output cumulants[ J]. IEEE Transactions on Acoustics: Speech and Signal Processing, 1990, 38(7):1257-1265.
  • 5Giannakis G B, MENDEL J M. Identification of non-minimum phase systems using higher order Statistics[J]. Transactions onAcoustics: Speech and Signal Processing, 1990, 38(7) : 1257 - 1265.
  • 6张贤达.时间序列分析[M].北京:清华大学出版社,1999.11-13.
  • 7边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 8Martin T H, Howard B. Demuth: Neural Network Design[M].[S.l] :PWS Publishing company,2002.

二级参考文献7

  • 1LEONTIOS J, HADJILEONTIADIS, STAVROS M. Adaptive reduction of heart sounds from lung sounds using fourth-order statistics[J]. IEEE Trans BME, 1997,44(7): 642-648.
  • 2MASTOROCOSTAS A, TOLIAS Y, THEOCHARIS J, et al.An orthogonal least squares-based fuzzy filter for real-time analysis of lung sounds[J]. IEEE Trans BME, 2000,47(9):1165-1176.
  • 3KANDASWAMYA A, SATHISH C, RAMANATHANC, et al.Neural classification of lung sounds using wavelet coefficients[J]. Computers in Biology and Medicine, 2004, 34 (4):523-537.
  • 4NIKIAS C, RAGHUVEER M. Bispectrum estimation: A digital signal processing framework[J]. Proc IEEE, 1987,75: 869-891.
  • 5CAILLEC L, JEAN MARC, GARELLO RENE. Comparison of statistical indices using third order statistics for nonlinearity detection[J]. Signal Processing,2004, 84(3):499-525.
  • 6牛海军,万明习,王素品,赵守国.基于高阶累计量的肺音信号AR模型参数和双谱估计[J].生物物理学报,2000,16(4):741-747. 被引量:2
  • 7赵守国,王素品,邹原,牛海军,万明习.肺音信号非高斯ARMA模型及双谱研究[J].西安交通大学学报,2001,34(4):355-359. 被引量:8

共引文献164

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部