摘要
研究强混合的保测变换所引起的混沌现象,证明了以下结论:如果X是一个满足第二可数性公理的拓扑空间,m是其上的一个外测度,满足条件:(1)X的每一个非空开集都是m-可测的并且有正的m-测度;(2)m在X的Borelσ-代数(?)(X)上的限制是一个概率测度:(3)对于任何Y(?)M存在一个 Borel集B∈(?)(X)使得B(?)Y和m(B)=m(Y),则对于概率空间(X,(?)(X),m)的任何一个强混合的保测变换f: X→X,和由正整数构成的任何一个严格递增的序列 {m_i},存在着一个集合C(?)X使得m(C)=1并且C是有限型混沌的,即对于C的任何一个有限子集A和任何一个映射F:A→X,序列{m_i}有一个子序列{r_i}使得lim_i→∞f^ri(a)=F(a)对于任何a∈A成立.给出了一维映射上的某些应用.
出处
《中国科学(A辑)》
CSCD
1996年第11期961-967,共7页
Science in China(Series A)
基金
国家自然科学基金