期刊文献+

混合前馈型神经网络在入侵检测中的应用研究 被引量:1

Application of a hybrid feedforward neural network to intrusion detection
下载PDF
导出
摘要 提出一种基于混沌神经元的混合前馈型神经网络,用于检测复杂的网络入侵模式.这种神经网络具有混沌神经元的延时、收集、思维和分类的功能,避免了MLP神经网络仅能识别网络中当前的滥用入侵行为的弱点.对混合网络进行训练后,将该网络用于滥用入侵检测.使用DARPA数据集对该方法进行评估,结果表明该方法可有效地提高对具备延时特性的Probe和DOS入侵的检测性能. A hybrid feedforward neural network based on chaotic neuron is proposed to detect complicate network intrusion. The proposed neural network has the capability of time-delay, collection, thinking and classification, based on which the weakness of general neural network is avoided which can only detect current misuse intrusion. The neural network is trained and applied to misuse intrusion detection cases. This approach is evaluated by using DARPA data set. Results show that the system's capability of detecting time-delayed Probe and DOS attacks is enhanced effectively by using the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2007年第4期432-435,共4页 Control and Decision
基金 国家自然科学基金项目(60473073) 国家863计划项目(2004AA1Z2060) 国家973计划项目(2006CB303000) 广东省自然科学基金项目(04010589)
关键词 网络安全 入侵检测系统 前馈型神经网络 混沌神经网络 Network security Intrusion detection system Feedforward neural network Chaotic neural network
  • 相关文献

参考文献16

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2杨辉华,王行愚,王勇,何倩.基于KPLS的网络入侵特征抽取及检测方法[J].控制与决策,2005,20(3):251-256. 被引量:14
  • 3Le J,Ghorbani A.Network intrusion detection using an improved competitive learning neural network[C].Proc of the 2nd Annual Conf on Communication Networks and Services Research.Fredericton:CA Press,2004:190-197.
  • 4Zhang C L,Jiang J,Mohamed Kamel.Intrusion detection using hierarchical neural networks[J].Pattern Recognition Letters,2005,26(6):779-791.
  • 5Cannady J.Neural networks for misuse detection:Initial results[C].Proc of Recent Advances in Intrusion Detection '98 Conf.Louvain-la-Neuve:CA Press,1998:31-47.
  • 6Bivens A,Palagiri C,Smith R,et al.Network-based intrusion detection using neural networks[C].Proc of Intelligent Engineering Systems through Artificial Neural Networks.NY:IEEE Press,2002:579-584.
  • 7Campbell W.Traditional indications and warnings for host based intrusion detection,indication and warning methodology[C].Proc of CERT Conf'99.West Point:CA Press,1999:232-236.
  • 8Feng Y,Wu K G,Wu Z F,et al.Intrusion detection based on dynamic self-organizing map neural network clustering[C].Proc of the 2nd Int Symposium on Neural Networks.Chongqing:Springer LNCS,2005:428-433.
  • 9Ramadas M,Ostermann S,Tjaden B.Detecting anomalous network traffic with self-organizing maps[C].Proc of Recent Advance in Intrusion Dection 2003.Pittsburgh:FL Press,2003:46-55.
  • 10Pasemann F.A simple chaotic neuron[J].Physical D,1997,104(2):205-211.

二级参考文献29

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 3肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 4宇传华 徐勇勇.ROC分析的基本原理[J].中华流行病学杂志,1998,19(2):413-415.
  • 5[1]Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks.IEEE Transact-ion on Neural Networks,1990,1(1):4~27
  • 6[2]Srinivasan B,Prasad U R.Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models.IEEE Transaction on Neural Networks,1994,5(2):213~227
  • 7[3]Schenker Banedikt,Mukul Agarwal.Dynamic modelling using neural networks.International Journal of Systems Science,1997,28(12):1 285~1 298
  • 8[4]Lin Tsungnan,Horne Bill G,Lee Giles C.How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies.Neural Networks,1998(11):861~868
  • 9[5]Adwankar Sandeep ,Banavar Ravi N.A recurrent network for dynamic system identification.International Journal of Systems Science,1997,28(12):1 239~1 250
  • 10Andrew H Sung. Identify important features for intrusion detection using support vector machines and neural networks[A]. IEEE Proc of the 2003 Symp on Application and the Internet[C]. Orlando: IEEE Computer Society Press, 2003: 209-216.

共引文献91

同被引文献12

  • 1杨辉华,王行愚,王勇,何倩.基于KPLS的网络入侵特征抽取及检测方法[J].控制与决策,2005,20(3):251-256. 被引量:14
  • 2蒋卫华,种亮,杜君.入侵检测中的审计追踪技术[J].计算机工程,2006,32(18):169-171. 被引量:7
  • 3Botha Martin, Von Solms Rossouw. Utilizing fuzzy logic and trend analysis for effective intrusion detection [J]. Computers and Security, 2003,22(5); 423-434.
  • 4Wang Y, Yang H H, Wang X Y, et al. Distrbuted intrusion detection system based on data fusion method [C]. The 5th World Congress on Intelligent Control and Automation. New Jersey: IEEE Press, 2004: 4331- 4334.
  • 5Dasgupta D, Gonzalez F. An immunity-based technique to characterize intrusoions in computer networks [J]. IEEE Trans on Evolutionary Computation, 2002, 6(3) : 281-291.
  • 6Tax D M J, Duin R P W. Data domain description using support vectors[C]. Proc of the European Symposium on Artificial Neural Networks. Brussels: Verleysen, 1999: 251-256.
  • 7Tax D M J, Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999,20 (11-13) : 1191-1199.
  • 8Vapnik V. The nature of statistical learning theory [M]. 2nd ed. New York: Springer-Verlag, 2000.
  • 9GonzalezF, Dasguta D. Combinng negative selection and classification techniques for anomaly detection[C]. Proc of the 2002 Congress on Evolutionary Computation. Washington DC, 2002, 6(3): 705-710.
  • 10林庆,王飞,吴旻,廖定安,王敏.基于专家系统的入侵检测系统的实现[J].微计算机信息,2007,23(03X):61-63. 被引量:7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部