期刊文献+

一种基于小波变换的红外小目标去噪算法 被引量:11

De-noising algorithm of infrared small target based on wavelet transforms
下载PDF
导出
摘要 研究了复杂背景下红外小目标图像的去噪问题,鉴于小波阈值法去噪的缺点,结合小波变换的去相关性和能量紧支性,提出一种新的去噪方法。考虑到实际中的复杂背景和大量干扰,弱小目标通常占有很少像素,首先对红外小目标图像进行二级小波变换,然后根据新的算法对变换所得小波细节系数进行邻域运算,最后通过小波逆变换得到处理后的图像。实验中采用Db3小波基函数,分别对两帧低信噪比原始图像进行仿真。仿真结果表明,该算法能很好地保存小目标的形状特征,抑制背景,达到较好的去噪效果。 The infrared small target de-noising in complicated background is studied. According to de-correlation and energy compaction of wavelet transforms, a new de-noising method is proposed. The method is put forward with the consideration of the practicality of the method, especially while the image involves complex background and a lot of noise. Firstly, the image is decomposed twice using wavelet transforms. Secondly, each wavelet detail coefficient is recalculated according to the new method in order to avoid the shortcomings of the hard or soft wavelet shrinkage. Lastly, the de-noised image is obtained by reconstruction from the processed coefficients. Simulation results show the de-noising method can preserve the shape character of small target, attenuate the background, and work efficiently in de-noising. The simulation used Db3 wavelet and two original images with low SNR. The size of one experimental image is 181 × 250 pixels and the other is 175 × 247 pixels.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第3期399-402,共4页 High Power Laser and Particle Beams
关键词 红外小目标 去噪 小波变换 细节系数 邻域运算 Infrared small target De-noising Wavelet transforms Detail coefficients Neighborhood operating
  • 相关文献

参考文献7

  • 1Donoho D L,Johnstone I M.Wavelet shrinkage:Asymptopia[J].J R Stat Soc B,1995,57:301-369.
  • 2Donoho D L.Denoising by soft-thresholding[J].IEEE Trans Infr Theory,1995,41:613-627.
  • 3潘洋,严萍,袁伟群.时变软阈值法在纳秒脉冲信号去噪中的应用[J].强激光与粒子束,2005,17(5):770-774. 被引量:6
  • 4高颖慧,李吉成,沈振康.红外小目标检测的预处理技术研究[J].红外与激光工程,2004,33(2):154-158. 被引量:21
  • 5Chen G Y,Bui T D,Krzyzak A.Image denoising with neighbour dependency and customized wavelet and threshold[J].Pattern Recognition,2005,38:115-124.
  • 6Chen G Y,Bui T D.Multiwavelet denoising using neighbouring coefficients[J].IEEE Signal Process Lett,2003,10(7):211-214.
  • 7John A S,Desai U B.Signal de-noising using the wavelet transform and regularization[C]//Signal Processing 1997 IEEE International Conference.1997,3:1861-1864.

二级参考文献13

  • 1Diani M, Baldacci A, Corsini G. Joint striping noise removal and background clutter cancellation in IR naval surveillance systems[J]. IEE Proc-Vis Image Signal Process, 2001, 148(6): 407-411.
  • 2郎晓虹.[D].长沙:国防科技大学,1994.
  • 3Mallat S. Theory for multi-resolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7) :674-693
  • 4Donoho D L. Denoising by soft-thresholding[J]. IEEE Transaction on Information,1995,41(3) :613-627
  • 5中国国家标准.高电压试验技术第二部分:测量系统.GB/T 16927.2-1997[S].北京:中国标准出版社,1997.(Chinese National Standard. High voltage testing technology part 2: measurement system. GB/T 16927.2-1997. Beijing: Standard Press of China, 1997)
  • 6Johnstone I M, Silverman B W. Wavelet threshold estimator for data with correlated noise[J]. Journal of the Royal Statistical Society,1997, Series B, Methodological 59, 319-351.
  • 7杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程,1998,27(1):23-28. 被引量:41
  • 8曾正中,邱毓昌,邱爱慈.小波分析在脉冲功率技术中的应用初探[J].电工电能新技术,1998,17(3):47-51. 被引量:4
  • 9彭嘉雄,周文琳.红外背景抑制与小目标分割检测[J].电子学报,1999,27(12):47-51. 被引量:143
  • 10韩客松.复杂背景下红外点目标检测的预处理[J].系统工程与电子技术,2000,22(1):52-54. 被引量:26

共引文献24

同被引文献101

引证文献11

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部