3[3]Kruger U. ,Zhou, Y. ,Irwin,G. W. Improved principal component monitoring of large-scale processes. Journal of Process Control, ISSN : 0959-15,2003.
4[4]Xun Wang, Kruger U. , Lennox B.. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice,2003, (11) : 613~632.
5Qin SJ, Li W, Yue HH. Recursive PCA for adaptive process monitoring [C]. Proc of IFAC World Congress, Bejing, P R China, 1999: 85-90.
6Patton R J, Chen J. Observer-based fault detection and isolation: robustness and applications[J]. Contr Eng Practice. 1997, 5 (5) : 671 - 682.
7Frank P M. Analytical and qualitative model-based faul03.28.t diagnosis a survey and some new results European Journal of Control, 1996,2 (1) : 6.
8Raich AC, Cinar A, Statistical process monitoring and disturbance diagnosis in multivariate continuous processes [J]. AIChE J , 1996(42):995-1009.
9Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principle component analysis [J].Control Engineering Practice ,1998(6):457-469.
10Jackson JE, A user's guide to principle compoents[M]. Wiley, New York:1991.