期刊文献+

分水岭算法和基于MRF的层次聚类相结合的混合无监督图像分割算法 被引量:7

Combined unsupervised image segmentation using watershed and hierarchical clustering with MRF
下载PDF
导出
摘要 提出一种新的混合多阶段无监督图像分割算法。在第一阶段,通过分水岭算法得到一幅过度分割的图像,该图像中的所有小区域作为初始聚类状态将在接下来的层次聚类阶段中被合并。在第二阶段,一种新的启发式的基于Bayesian方法和Markov随机域的计算模型被用于基于区域的层次聚类算法,该算法用来合并初始分割结果中的邻接区域,以改进分水岭算法的分割效果。深入分析了该计算模型中两个相互作用的部分。通过对多种不同种类图像使用该算法进行分割,表明这种多阶段的方法适合无监督分割,它按照视觉一致的方式合并区域,并且比传统的层次聚类算法快很多。 A new combined multistage method for image segmentation was proposed. In the first stage, an oversegmented image was got using immersion watershed segmentation, and then primitive segmented results were provided for following merging. In the second stage, region based hierarchical clustering was used with a new heuristic computational model to merge adjacent primitive regions spatially. The model was derived from Bayesian method and Markov random field, and contained two interactive components. From experiments with three different kinds of images, the proposed method shows itself as a very effective way in unsupervised image segmentation. The hierarchy model merges regions in a way same as human perception and finishes within several seconds even for complex aerial image.
作者 张鲲 王士同
出处 《计算机应用》 CSCD 北大核心 2007年第3期673-676,共4页 journal of Computer Applications
基金 教育部优秀人才支持计划项目(NCET-04-0496) 教育部科学研究重点项目(105087)
关键词 分水岭算法 多阶段无监督分割 MRF 层次聚类 Bayesian方法 watershed multistage unsupervised segmentation Markov Random Field (MRF) hierarchical clustering Bayesian method
  • 相关文献

参考文献10

  • 1BEUCHER S,LANTUEJOUL C.Use of Watershed in Contour Detection[A].Proceedings of International Workshop on Image Processing,Real-Time Edge and Motion Detection/Estimation[C].Rennes,France,1979.
  • 2VINCENT L,SOILLE P.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis of Machine Intelligence,1991,13(6):583-598.
  • 3NAJMAN L,SCHMITT M.Geodesic Saliency of Watershed Contours and Hierarchical Segmentation[J].IEEE Transactions on Pattern Analysis of Machine Intelligence,1991,18(12):1163-1173.
  • 4HILL PR,CANAGARAJAH CN,BULL DR.Image Segmentation Using a Texture Gradient Based Watershed Transform[J].IEEE Transactions on Image Process,2003,12(12).
  • 5O'CALLAGHAN R J,BULL DR.Combined Morphological-Spectral Unsupervised Image Segmentation[J].IEEE Transactions on Image Process,2005,4(1).
  • 6LEE S,CRAWFORD MM.Unsupervised Multistage Image Classification Using Hierarchical Clustering with a Bayesian Similarity Measure[J].IEEE Transactions on Image Process,2005,14(3).
  • 7LIN YC,TSAI YP,HUNG YP,et al.Comparison Between Immersion-Based and Toboggan-Based Watershed Image Segmentation[J].IEEE Transactions on Image Process,2006,15(3).
  • 8POLLARD D,CLIFFORD H.Theorem for Markov Random Fields[EB/OL].http://www.stat.yale.edu/~ pollard/251.spring04/Handouts/Hammersley-Clifford.pdf,2006.
  • 9SANDBERG O.Markov Random Fields and Gibbs Measures[EB/OL].http://www.math.chalmers.se/~ olleh/Markov_Sandberg.pdf,2006.
  • 10SARKAR A,BISWAS MK,SHARMA KMS.A Simple Unsupervised MRF Model Based Image Segmentation Approach[J].IEEE Transactions on Image Process,2000,9(5).

同被引文献81

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部