期刊文献+

真实场景运动目标轨迹有效性判断与自动聚类算法研究 被引量:9

Automatic Validating and Clustering Method for Trajectories of Moving Objects in Real Scene
下载PDF
导出
摘要 提出了真实场景中的运动目标轨迹有效性判断与自动聚类方法。利用轨迹长度、坐标值方差及目标相邻两帧运动方向等信息,对轨迹进行了预处理,得到有效的轨迹,然后以其作为样本,计算轨迹之间的空间相似距离,采用K均值聚类法,按轨迹的几何形状完成了轨迹聚类。提出了利用目标运动的起始点及整个运动过程中目标的运动方向信息,采用K均值聚类方法,进一步按目标的运动方向完成了轨迹聚类。两种真实场景的目标轨迹聚类结果证明了该方法的有效性。其研究结果为学习轨迹模式、目标运动轨迹识别、分类、异常检测奠定了基础。 A novel method that can accurately validate and cluster trajectories of the moving objects in real scenes was presented. Firstly, through calculating the length, variance of the coordinates and orientation code of the trajectories, valid trajectories were retained. And then the valid ones were taken as the samples and automatically clustered based on K-means approach using the distance between two trajectories. Moreover, a new method to further cluster the trajectories using the start points of them and the information of orientation during the whole process was presented. The trajectories are effectively clustered in two real scenes. Results can provide efficient evidence for the latter work such as trajectory recognition, classification, and anomaly detection.
出处 《计算机应用研究》 CSCD 北大核心 2007年第4期158-160,169,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60372085) 陕西省科学技术研究发展计划项目(2003K06-G15)
关键词 轨迹聚类 K均值 轨迹识别 分类 异常检测 trajectory clustering K-means(KM) trajectory recognition classification anomaly detection
  • 相关文献

参考文献8

  • 1LEE K K, XU Yangsheng. Boundary modeling in human walking trajectory analysis for surveillance : proceedings of the 2004 IEEE International Conference on Robotics & Automation [ C ]. [ S. 1. ] : [ s.n. ], 2004.
  • 2BASHIR F,KHOKHAR A,SCHONFELD D. Automatic object trajectory-based motion recognition using gaussian mixture models: IEEE International Conference on Multimedia & Expt ( ICME 2005 ) [ C ].Amsterdam: [ s. n. ] , 2005.
  • 3OWENS J, HUNTER A. Application of the self-organizing map to trajectory classification: proc. of the 3rd IEEE International Workshop on Visual Surveillance[ C]. [ S. 1. ] ; [ s. n], 2000:77-83.
  • 4HU Weiming, XIE Dan, TAN Tieniu. A hierarchical self-organizing approach for learning the patterns of motion trajectories [ J ]. IEEE Transactions on Neural Networks, 2004,15( 1 ):135-144.
  • 5胡卫明,谢丹,谭铁牛,沈俊.轨迹分布模式学习的层次自组织神经网络方法[J].计算机学报,2003,26(4):417-426. 被引量:15
  • 6FATIH P. Trajectory distance metric using hidden markov model based representation, MA 02139 [ R]. Calnbridge: Mitsubishi Electric Research Laboratories, 2004.
  • 7YANG Tao, LI S Z, PAN Quan, et al. Real-time multiple object tracking with occlusion handling in dynamic scenes: IEEE Computer Vision and Pattern Recognition Conference ( CVPR' 05) [ C ]. SanDiego : [ s. n. ], 2005.
  • 8FAITH P, TETSUJI H. Event detection by eigenvector decomposition using object and frame features: proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops( CVPRW' 04 ) [ C ]. [ S. 1. ]: [ s. n. ], 2004.

二级参考文献16

  • 1[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746
  • 2[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135
  • 3[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478
  • 4[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454
  • 5[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312
  • 6[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851
  • 7[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615
  • 8[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871
  • 9[9]Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757
  • 10[10]Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behavior. Image and Vision Computing, 2000, 18(9):697~704

共引文献14

同被引文献75

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部