摘要
基于欧拉-伯努利梁理论和层剪切模型,应用拉格朗日方程推导了单段核筒悬挂减振控制结构的运动方程.在此基础上通过时程分析评价了结构的减振性能,应用复模态叠加法对结构的响应进行了频域分析,以主体核筒顶点位移和悬挂楼面层间位移响应为优化目标,对悬挂楼面的侧移刚度、阻尼器的刚度和阻尼系数进行优化.分析结果表明,存在最优的侧移刚度和阻尼器刚度使得核筒位移响应最小,存在较优的阻尼器阻尼系数可同时有效抑制核筒和悬挂楼面的响应,所以通过合理设置结构参数能够显著减小核筒悬挂减振结构的动力响应.
Based on Euler-Bernoulli beam theory and the floor shear vibration model, the motion equation of a single core-tube suspension structure is derived through Lagrange's formulation. The vibration absorption performance is demonstrated by time-history analysis, and the structural responses are calculated in the frequency-domain by complex mode superposition method. Structural parameters such as the lateral stiffness of suspended floors, damping coefficient and damper stiffness are optimized, considering core-tube top displacement and inter-storey drift of the suspended floors as optimization objectives. Analytical results show that there are optimal lateral stiffness and damper stiffness leading to the minimum displacement, and satisfactory damping coefficient may effectively control the responses of the core-tube and suspended floors. Consequently, setting reasonable structural parameters could reduce the dynamic response.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第2期181-185,共5页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(50178018)
东南大学优秀学位论文基金资助项目
关键词
高层建筑
悬挂结构
动力特性
优化分析
核筒
tall building
suspension structure
dynamical behavior
optimizing analysis
core tube