期刊文献+

基于混合优化策略的微分进化改进算法 被引量:20

A Modified Differential Evolution Algorithm with Hybrid Optimization Strategy
下载PDF
导出
摘要 微分进化算法具有控制参数少、鲁棒性强、易于使用等优点,并具有不同的优化策略.本文在对微分进化算法各优化策略性能进行分析的基础上,提出了基于混合优化策略的微分进化改进算法.改进算法的主要思想是将种群中的个体随机地分成两组,每组采用不同的优化策略.利用五个标准的优化算法测试函数对改进算法的收敛速度和搜索成功率进行了测试,并与动态微分进化算法和微粒群算法进行了比较.实验结果表明,本文提出的改进算法在保证算法搜索成功率的同时,大大提高了算法搜索效率. The differential evolution algorithm is robust,easy to use,requires few control parameters,and has various optimization strategies. Based on analysis of advantages and disadvantages of these optimization strategies, a modified differential evolution algorithm with hybrid optimization strategy is proposed. The main idea of the modified differential evolution algorithm is to divide all of the individuals into two groups randomly, and the two groups adopt different optimization strategies, The convergence speed and search succeed probability of the modified differential evolution are tested using five benchmark functions for optimization algorithm, and the results are compared with dynamic differential evolution and particle swarm optimization. From the simulation resuits, it is observed that the search efficiency of the modified differential evolution is significantly improved as well as the high search succeed probability is ensured.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第B12期2402-2405,共4页 Acta Electronica Sinica
关键词 优化算法 优化策略 微分进化算法 optimization algorithm optimization strategy differential evolution algorithm
  • 相关文献

参考文献11

  • 1Rainer Storn,Kenneth Price.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optirmzation, 1997,11(4) :341 - 359.
  • 2Rainer Stom. Designing nonstandard filters with differential evolution[J]. IEEE Signal Prcessing Magazine, 2005,22( 1 ) :103 - 106.
  • 3Chong-wei Chen, De-zhao Chen, Guang-zhi Cao. An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry[ J ]. Chemometrics and Intelligent Laboratory Systems,2002,64(1):27-43.
  • 4Sandra Paterlinia, Thiemo Krinkb. Differential evolution and particle swarm optimisafion in partitional clustering [ J ]. Computational Statistics & Data Analysis, 2006, 50 ( 5 ) : 1220 -1247.
  • 5冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 6Anyong Qing. Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems[ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44( 1 ):116 - 125
  • 7Paul K. Bergey, Cliff Ragsdale. Modified differential evolution: a greedy random strategy for genetic recombination[ J ]. Tile International Journal of Management Science,2005,33(3):255- 265.
  • 8Jianyong Sun, Qingfu Zhang, Edward P K Tsang. DE/EDA: a new evolutionary algorithm for global optimization[ J]. Information Sciences, 2005,169(3 - 4) : 249 - 262.
  • 9P Kaelo,M M Ali.A numerical study of some modified differential evolution algorithms[ J ]. European Journal of Operational Research,2006,169(3):1176 - 1184.
  • 10李颖,徐桂芝,饶利芸,何任杰,颜威利.微分进化算法在头部电阻抗成像中的应用[J].中国生物医学工程学报,2005,24(6):672-675. 被引量:11

二级参考文献12

  • 1Osamu Ono,Buhei Kobayashi,Masaoki Shimizu.Time Optimal Path Planning of Autonomous Vehicle with Genetic Algorithm[C].In:Proc of the Asian Control Conference,1994:689~692.
  • 2Storn R ,Price K.Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces [J].Journal of Global Optimization,Kluwer Academic Publishers, 1997; 11:341~359.
  • 3Storn R.Sytem Design by Constraint Adaptation and Differential Evolution[J].IEEE Transactions on Evolutionary Computation, 1999; 3 ( 1 ):22~34.
  • 4Wang C H,Hong J G. Constrained Minimum-time Path Planning for Robot Manipulators via Virtual Knots of the Cubic B-spine Functions[J].IEEE Transactions on Automatic Control, 1990;AC-35(5):573~577.
  • 5Woo EJ,Hua P,Webster JG,et al.A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography[J].IEEE Trans Medical Imaging,1993,12(2):137-146.
  • 6Rao L,He R,Wang Y,et al.An efficient improvement of modified Newton-Raphson algorithm for electrical impedance tomography[J].IEEE Trans Mag,1999,35(3):1562-1565.
  • 7Olmi R,Bini M,Priori S.A genetic algorithm approach to image reconstruction in electrical impedance tomography[J].IEEE Trans Evolu Compu,2000,4(1):83-88.
  • 8Storn R,Price K.Differential Evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].Technical Report,TR-95-012,ICSI,March 1995.
  • 9Storn R,Price K.Differential Evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Jour of Global Optimization,1997,11(4):341-359.
  • 10Lampinen J.A constraint handling approach for the differential evolution algorithm[A].Proc of the Congress on Evolutionary Computation 2002(CEC' 02),Honolulu,Hawaii,2002,2:1468-1473.

共引文献37

同被引文献152

引证文献20

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部