期刊文献+

基于优化平滑因子σ的概率神经网络的变压器故障诊断方法研究 被引量:18

Fault Diagnosis Method Research of Transformer Based on Optimized Smooth Factor of Probability Neural Network
原文传递
导出
摘要 目前在概率神经网络的机理研究中存在一个瓶颈问题:在有限的模式样本中提炼出能反映整个样本空间的平滑因子σ,目前的σ估计都基于经验或有限样本聚类的方法,并不能将空间的概率特性很完整地表达出来,而遗传算法可以在没有任何先验知识的情况下发现系统潜在知识。采用遗传算法来优化概率神经网络的σ,并把它应用于电力变压器的故障诊断中。通过MATLAB7.0仿真结果得出,经过遗传算法优化平滑因子后的概率神经网络可以大大提高故障诊断的准确性。 There is a bottleneck Problem in the probability neural network mechanism research., the smooth factor which can reflect the entire sample space is refined in the limited pattern sample, the present smooth factor estimated all based on the experience estimation or the very limited sample cluster method, which cannot express very completely the spatial probability characteristic, but genetic algorithm can discover the latent knowledge of the system without any prioried knowledge. The genetic algorithm is used to optimize the probability neural network smooth factor. It is applied to the power transformer fault diagnosis. Simulation result with the MATLAB 7.0 proves that this method is correct.
作者 陈波 郭壮志
出处 《现代电力》 2007年第2期44-47,共4页 Modern Electric Power
关键词 概率神经网络 平滑因子 遗传算法 probability neural network smooth factor genetic algorithm
  • 相关文献

参考文献6

二级参考文献18

  • 1李勇,叶荣学,曹祖庆.基于BP网络的凝汽器故障隶属函数及模糊诊断方法[J].汽轮机技术,1995,37(4):199-203. 被引量:13
  • 2[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119.
  • 3[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243.
  • 4[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207.
  • 5[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347.
  • 6[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153.
  • 7[6]Chickering D. Learning equivalence classes of Bayesian-network structures [A]. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence [C]. Portland, OR: Morgan Kaufmann, 1996.
  • 8[7]Heckerman D, Mamdani A, Wellman M. Real-world applications of Bayesian networks [J]. Communications of the ACM, 1995, 38 (3): 24~26.
  • 9[8]Sewell W, Shah V. Social class, parental encouragement, and educational aspirations [J]. American Journal of Sociology, 1968, 73: 559~572.
  • 10[9]Spirtes P, Glymour C, Scheines R. Causation, Predication, and Search [M]. New York: Springer-Verlag, 1993.

共引文献164

同被引文献148

引证文献18

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部