期刊文献+

关联规则兴趣度度量方法的比较研究 被引量:14

The Comparative Study on Interestingness Measures for Mining Association Rules
下载PDF
导出
摘要 关联规则挖掘是数据挖掘中重要的研究课题,已有许多有效的实现算法。然而,这些算法找到的关联规则数目太多,用户无法对其进行分析。为了克服这个问题,出现了一些关联规则衡量标准来分析规则的有趣性,在本文里我们在给出的实例上比较分析了一些关联规则客观兴趣度度量指标,提出了使用关联规则客观兴趣度度量指标的一些建议。 Discovering association rules is one of the most important tasks in data mining and many effieient algorithms were proposed in literature. However, the number of discovered rules is open so large, so the User cannot analyze all discovered rifles. To overcome that problem several methods for mining interesting rulers only have been proposed. Many measures have been proposed to determine the interestingness of the rule. In this paper we have selected a few of different measures, we have compared these measures by using a data set, and we have mode some recommendation about the use of the measures for discovering the most interesting rulers.
出处 《情报学报》 CSSCI 北大核心 2007年第2期266-270,共5页 Journal of the China Society for Scientific and Technical Information
关键词 数据挖掘 关联规则 兴趣度度量 data mining, association rules, interesting measure
  • 相关文献

参考文献13

  • 1Padmanabhan B,Tuzhilin A.Unexpectedness as a measure of interestingness in knowledge discovery.Decision Support System,1999:303-318.
  • 2Wang K,He Y,Han J.Mining Frequent Itemsets Using Support Constraints.Proc 26th Int.Conf.Very Large Databases.Cario,Egypt,2000:43-52.
  • 3Liu B,Hsu W,Ma Y.Mining Association Rules With Multiple Minimum Supports.Proc.ACM-SIGKDD Int.Conf.Knowledge Discovery and Data Mining.San Deigo,CA,1999:337-341.
  • 4Seno M,Karypis G.LPMiner:an algorithm for finding frequent itemsets using length-decreasing support constraint.ICDM'01.California:IEEE Computer Society,2001:505-512.
  • 5苏占东,游福成,杨炳儒.关联规则的综合评价方法研究与实例验证[J].计算机应用,2004,24(10):17-20. 被引量:27
  • 6窦祥国,胡学钢.关联规则的评价方法研究[J].安徽技术师范学院学报,2005,19(4):44-47. 被引量:5
  • 7Brin S,Motwani R,Silverstein C.Beyond market baskets:Generalizing association rules to correlations.Proceedings of the ACM SIGMOD Conference on Management of Data.Tucson,USA,1997:265 -276.
  • 8Brins S,Motwani R,Ullman JD,et al.Dynamic itemset counting and implication rules for market basket Data.Proceedings of the ACM SIGMOD Conf on Management of Data.Tucson,USA,1997:207-216.
  • 9Brin S,Motwani R,Ullman J D,et al.Dynamic Itemset Counting and Implication Rules for Market Basket Analysis.SIGMOD'97,Tucson,Arizona,1997 (5):255-264.
  • 10罗可,吴杰.关联规则衡量标准的研究[J].控制与决策,2003,18(3):277-280. 被引量:13

二级参考文献30

  • 1苏占东,游福成,杨炳儒.关联规则的综合评价方法研究与实例验证[J].计算机应用,2004,24(10):17-20. 被引量:27
  • 2[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[A]. Proc of ACM SIGMOD Conf on Management of Data[C]. Washington,1993.207-216.
  • 3[2]Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. Proc of the 20th Int Conf on Very Large Databases[C]. Santiago,1994.487-499.
  • 4[3]Agrawal R, Mannila H, Srikant R, et al. Fast discovery of association rules[A]. Advances in Knowledge Discovery and Data Mining[C]. AAAI/MIT Press,1996.307-328.
  • 5[4]Brin S, Motwani R, Silverstein C. Beyond market basket: Generalizing association rules to correlations[A]. Proc 1997 ACM-SIGMOD Int Conf Management ofData[C]. Tucson,1997.265-276.
  • 6[5]Srikant R, Agrawal R. Mining generalized association rules[A]. Proc of the 21st Int Conf on Very Large Data Bases[C]. Zurich,1995.407-419.
  • 7[6]Srikant R, Agrawal R. Mining quantitative association rules[A]. Proc of the ACM SIGMOD[C]. Montreal,1996.1-12.
  • 8[7]Savasere A, Omiecinski E, Navathe S. Mining forstrong negative association in a large database of customer transactions[A]. Proc of the Int Conf on Data Engineering[C]. Orlando,1998.494-502 .
  • 9[4]KLEMETIMEN M,MANNILA H,et al.Finding interesting rules from large sets of discovered association rules[A].CIKM′94[C].ACM Press,1994.401-407.
  • 10[5]PARK JS,et al. Using a hash-based method with transaction trimming for mining association rules[A].IEEE Trans on Knowledge and Data Engineering[C].1997,9(5):813-825.

共引文献60

同被引文献80

引证文献14

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部