期刊文献+

THE COMPLETE ASYMPTOTIC EXPANSION FOR BASKAKOV OPERATORS 被引量:1

THE COMPLETE ASYMPTOTIC EXPANSION FOR BASKAKOV OPERATORS
下载PDF
导出
摘要 In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators. In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators.
出处 《Analysis in Theory and Applications》 2007年第1期76-82,共7页 分析理论与应用(英文刊)
基金 Supported by the Natural Science Foundation of Beijing(1072006)
关键词 Baskakov operator Meyer-Konig and Zeller operator complete asymptotic expansion Stirling numbers Baskakov operator, Meyer-Konig and Zeller operator, complete asymptotic expansion, Stirling numbers
  • 相关文献

参考文献2

二级参考文献10

  • 1周定轩,J Approx Theory,1994年,76卷,403页
  • 2周定轩,J Approx Theory,1992年,69卷,167页
  • 3周定轩,J Approx Theory,1992年,70卷,68页
  • 4宣培才,J Eng Math,1992年
  • 5宣培才,J M R E,1992年
  • 6Z Ditzian, V Totik. Moduli of Smoothness[M]. New York: Spring-Verlag, 1987.
  • 7Z Ditzian. A global inverse theorem for combinations of Bernstein polynomials[J]. J. Approx. Theory,1979,26:277-292.
  • 8H Berens,G G Lorentz. Inverse theorems for Bernstein polynomials[J]. Indiana Univ. Math. , 1972,21:693-708.
  • 9谢林森.Baskakov算子线性组合和导数的点态逼近定理[J].南京大学学报(数学半年刊),2001,18(2):251-260. 被引量:9
  • 10周定轩.Bernstein算子加Jacobi权的收敛阶[J].数学学报(中文版),1992,35(3):331-338. 被引量:22

共引文献13

同被引文献4

  • 1DITZIAN Z, TOTIK V. Moduli of Smoothness[M]. New York: Springer-Verlag, 1986.
  • 2LOPEZ-MORENO A J, MUNOZ-DELGADO F J. Asymptotic expansion of multivariate conservative linear operators[J]. J Comput Appl Math, 2003, 150: 219-251.
  • 3SIKKEMA P C. On The asymptotic approximation with operators of Meyer-Konig and Zeller[J]. Indag Math, 1970, 32: 428-440.
  • 4ABEL U. The complete asymptotic expansion for the Meyer-KSnig and Zeller operators[J]. J Math Anal and Appl, 1997, 208: 109-119.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部