摘要
讨论了一类改进的Leslie-Gower和Holling-TypeⅡ型捕食-食饵模型平衡态方程正解的性质(边界条件为第三边值条件).运用上下解方法,不动点指数理论,局部分歧理论,得出了该系统存在多个正解或惟一正解的条件,即参数对解的个数有一定影响.
Properties of steady-state positive solutions for a class of predator-prey system was investigated in this paper. The reaction-diffusion equations have modified Leslie-Gower and Holling-Type Ⅱ functional response under the third boundary conditions. By means of lower-upper solutions methods, theory of fixed point indices and local bifurcation theory, the conditions for multiplicity and uniqueness positive solutions of this system was obtained. Namely, the number of solutions was reflected by parameter.
出处
《纺织高校基础科学学报》
CAS
2007年第1期1-5,共5页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10571115)
关键词
反应扩散方程
上下解
局部分歧理论
reaction-diffusion equations
lower-upper solutions
local bifurcation theory