期刊文献+

一类反应扩散方程的多解问题与解的惟一性 被引量:1

On multiplicity and uniqueness solutions for a class of reaction-diffusion equations
下载PDF
导出
摘要 讨论了一类改进的Leslie-Gower和Holling-TypeⅡ型捕食-食饵模型平衡态方程正解的性质(边界条件为第三边值条件).运用上下解方法,不动点指数理论,局部分歧理论,得出了该系统存在多个正解或惟一正解的条件,即参数对解的个数有一定影响. Properties of steady-state positive solutions for a class of predator-prey system was investigated in this paper. The reaction-diffusion equations have modified Leslie-Gower and Holling-Type Ⅱ functional response under the third boundary conditions. By means of lower-upper solutions methods, theory of fixed point indices and local bifurcation theory, the conditions for multiplicity and uniqueness positive solutions of this system was obtained. Namely, the number of solutions was reflected by parameter.
出处 《纺织高校基础科学学报》 CAS 2007年第1期1-5,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571115)
关键词 反应扩散方程 上下解 局部分歧理论 reaction-diffusion equations lower-upper solutions local bifurcation theory
  • 相关文献

参考文献8

二级参考文献21

  • 1容跃堂.一类反应扩散方程组解的渐近性态[J].纺织高校基础科学学报,1995,8(4):326-330. 被引量:1
  • 2王明新,北京大学学报,1992年,28卷,1期,36页
  • 3Pao C. V., Nolinear parabolic and elliptic equations, New York: Plenum Press, 1992.
  • 4Blat J., Brown K. J., Bifurcation of steady-state solutions in predator-prey and competition systems, Proc.Roy. Soc. Edinburgh, 1984, 97A: 21-34.
  • 5Dancer E. N., Lopez-Gomez J., Ortega R., On the spectrum of some linear noncooperative elliptic systems with radial symmetry, Differential and Integral Equations, 1995, 8(3): 515-523.
  • 6Li L., Coexistence theorems of steady state for predator-prey interact systems, Trans. Amer. Math. Soc.,1988, 305: 143-166.
  • 7Wang M. X., Nonlinear parabolic equations, Beijing: Scientific Press, 1993 (in Chinese).
  • 8Brown K. J., Hess P., Positive periodic solutions of predator-prey reaction-diffusion systems, Nonlinear Anal.,1991, 16(12): 1147-1158.
  • 9Brown K. J., Nontrivial solutions of predator-prey systems with small diffusion, Nonlinear Anal., 1987, 11:685-689.
  • 10Conway E. D., Gardner R., Smoller J., Stability and bifurcation of steady state solutions for predator-prey equations, Adv. Appl. Math., 1982, 3: 288-334.

共引文献12

同被引文献6

  • 1北京大学数学系.高等代数[M].2版.北京:高等教育出版社,1988.
  • 2PENG Zhen-yun, HU Xi-yan, ZHANG Lei. On the construction of a Jacobi matrix from its mixed-type eigenpairs[J]. Linear Algebra and its Applications, 2003,362 :191-200.
  • 3WONHAM W M. Linear multivariable control:A geometric approach[M]. Berlin:Springer-Verlag,1979.
  • 4GLADWELL G M L. Inverse problems in vibration[M]. Dordrecht: Martinus Nijhoff,1986.
  • 5JOSEPH K T. Inverse eigenvalue problem in structural design[J], AIAA J, 1992,30:2 890-2 896.
  • 6胡锡炎,张磊,黄贤通.Jacobi矩阵的逆特征问题[J].系统科学与数学,1998,18(4):410-416. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部