期刊文献+

迭代粒子群算法及其在间歇过程鲁棒优化中的应用 被引量:3

Iterative Particle Swarm Algorithm and Its Application to Robust Optimization of Batch Process
下载PDF
导出
摘要 针对无状态独立约束和终端约束的间歇过程鲁棒优化问题,将迭代方法与粒子群优化算法相结合,提出了迭代粒子群算法.对于该算法,首先将控制变量离散化,用标准粒子群优化算法搜索离散控制变量的最优解.然后在随后的迭代过程中将基准移到刚解得的最优值处,同时收缩控制变量的搜索域,使优化性能指标和控制轨线在迭代过程中不断趋于最优解.算法简洁、可行、高效,避免了求解大规模微分方程组的问题.对一个间歇过程的仿真结果证明了迭代粒子群算法可以有效地解决无状态独立约束和终端约束的间歇过程鲁棒优化问题. An iterative particle swarm algorithm is proposed for the robust optimization problem of batch processes without state independent and end-point constraints, which combines the iteration method and the particle swarm optirhization algorithm together. For the algorithm, the control variables are discretized firstly and the standard particle swarm optimization algorithm is used to search for the best solution of the discretized control variables. Second, the benchmark is moved to the acquired optimal values in the subsequent iterations and the searching space gets con- tracted a't the same time; hence the optimization performance index and control profile can achieve the best value gradually through iterations. The algorithm is simple, feasible and efficient, and avoids the problem of solving largescale differential equation group. The simulation results of a batch process shows that the iterative particle swarm algorithm can soive the robust optimization problems of batch processes effectively if there is no state independent and end-point constraints.
出处 《信息与控制》 CSCD 北大核心 2007年第2期230-234,共5页 Information and Control
基金 国家自然科学基金资助项目(60504033)
关键词 迭代粒子群算法 间歇过程 鲁棒优化 iterative particle swarm algorithm batch process robust optimization
  • 相关文献

参考文献10

  • 1Srinivasan B,Bonvin D,Visser E,et al.Dynamic optimization of batch processes Ⅱ.Role of measurements in handling uncertainty[J].Computers and Chemical Engineering,2002,27(1):27 ~44.
  • 2Terwiesch P,Agarwal M,Rippin D W T.Batch unit optimization with imperfect modelling:A survey[J].Journal of Process Control,1994,4(4):238 ~258.
  • 3Ruppeu D,Benthack C,Bonvin D.Optimization of batch reactor operation under parametric uncertainty:Computational aspects[J].Journal of Process Control,1995,5(4):235 ~240.
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of the IEEE International Conference on Neural Networks[C].Piscataway,NJ,USA:IEEE,1995.1942 ~1948.
  • 5Ourique C O,Biscaia Jr E C,Pinto J C.The use of particle swarm optimization for dynamical analysis in chemical processes[J].Computers and Chemical Engineering,2002,26 (12):1783 ~ 1793.
  • 6Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2001.81 ~86.
  • 7谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 8张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 9Rajesh J,Gupta K,Kusumakar H S,et al.Dynamic optimization of chemical processes using ant colony framework[J].Computers and Chemistry,2001,25(6):583 ~595.
  • 10Tieu D,Cluett W R,Penlidis A.A comparison of collocation methods for solving dynamic optimization problems[J].Computers and Chemical Engineering,1995,19(4):375 ~ 381.

二级参考文献39

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献436

同被引文献19

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部