期刊文献+

非Lipschitz条件下由Lévy过程驱动的倒向随机微分方程解的存在唯一及其稳定性(英文) 被引量:2

Existence, Uniqueness and Stability of Solutions for BSDE Driven by Lévy Processes under Non-Lipschitz Condition
下载PDF
导出
摘要 本文研究了由满足某种矩条件下Lévy过程相应的Teugel鞅及与之独立的布朗运动驱动的倒向随机微分方程,给出了飘逸系数满足非Lipschitz条件下解的存在唯一及稳定性结论.解的存在性是通过Picard迭代法给出的.解的L2收敛性是在飘逸系数弱于L2收敛意义下所得到的. We deal with backward stochastic differential equations (BSDEs in short) driven by Teugel's martingales associated with Levy process satisfying some moment condition and an independent Brownian motion. We derive the existence, uniqueness and stability of solutions for these equations under non-Lipschitz condition on the coefficients. And the existence of the solutions is obtained by a Picard-type iteration. The strong L^2 convergence of solutions is derived under a weaker condition than the strong L^2 convergence on the coefficients.
出处 《应用数学》 CSCD 北大核心 2007年第2期307-315,共9页 Mathematica Applicata
基金 Supported by the Key Science and Technology Project of Ministry of Education(207407) NSF of Anhui Educational Bureau(2006kj251B) the Special Project Grants of AnhuiNormal University (2006xzx08)
关键词 倒向随机微分方程 LEVY过程 Teugel Backward stochastic differential equation Levy process Teugel's martingale
  • 相关文献

参考文献12

  • 1Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation [J].System Control Lett. , 1990,14:55-61.
  • 2El Karoui N, Peng S, Quenez M C. Backward stochastic differential equations and applications in finance[J].Math. Fina.,1997,7:1-71.
  • 3Hamadene S, Lepeltier J P. Zero-sum stochastic differential games and BSDEs[J]. Syst. Cont. Lett. , 1995,4:259-263.
  • 4Peng S. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[J].Stochastic and Stochastic Reports, 1991,37 : 61-74.
  • 5Mao X. Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients[J].Stoc. Proc. Appl. , 1995,58:281-292.
  • 6Situ R. On solutions of backward stochastic differential equations with jumps and applications[J].Stoc. Proc. Appl. ,1997,6:209-236.
  • 7Tang S,Li X. Necessary condition for optional control of stochastic system with random jumps[J].STAM J. Control Optim. , 1994,32:1447- 1475.
  • 8Ouknine Y. Reflected BSDE with jumps[J]. Stochastic and Stochastic Reports, 1998,5:111-125.
  • 9Barles G, Buckdahn R, Pardoux E. BSDE's and integral-partial differential equations[J]. Stochastics, 1997,60:57-83.
  • 10Nualart D, Schoutens W. Chaotic and predictable representation for Levy processes[J].Stoc. Proc. Appl. , 2000,90:109-122.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部