期刊文献+

一类具有二次感染和接种的两病株流行病模型(英文) 被引量:3

A Two-strain Epidemic Model with Super-infection and Vaccination
下载PDF
导出
摘要 本文考虑了一类具有二次感染和接种的两病株流行病模型,通过定义每一病株的基本再生数和侵入再生数,我们分析了非负平衡态的稳定性并获得了这样结论:对于较低的接种水平,病株一感染者处于支配地位而病株二感染者将从易感人群中消失,对于非常高的接种水平,疾病将均被消除. In this paper, a two-strain epidemic model with super-infection and vaccination is proposed and analyzed. By defining the basic reproduction number of each strain and the invasion reproduction numbers, stability of nonegative equilibria is analyzed, respectively. We obtain the conclusion that for the low vaccination level, the infectious individuals for strain one dominate while the infectious individuals for strain two will vanish from the susceptible population;for the sufficiently high vaccination level,the disease will be eradicated.
出处 《应用数学》 CSCD 北大核心 2007年第2期328-335,共8页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China(10671166)
关键词 病株 接种 二次感染 稳定性 Strain Vaccination Super-infection Stability
  • 相关文献

参考文献7

  • 1Lin Juan, Andreasen Viggo, Simon Levin A. Dynamics of influenza a drift: the linear three-strain mode[J]. Math. Biosci. , 1991, 162:33-51.
  • 2Li Jia, Zhou Yican, Ma Zhien, James Hyman M. Epidemiological model for mutating pathogens[J]. SIAM J. Appl. Math. ,2004,65(1):1-23.
  • 3Mosquera J. Evolution of virulence: a unified framework for coinfection and superinfection [J]. J. Math. Biol., 1998,195:293-313.
  • 4Martcheva M, Horst Thieme R. Progression age enhanced backward bifurcation in an epidemic model with super-infection[J]. J. Math. Biol. , 2003,46:385-424.
  • 5Iannelli Mimmo, Martcheva Maia, Li Xuezhi. Strain replacement in an epidemic model with superinfection and perfect vaccination[J]. Math. Biosci. , 2005,195 : 23-46.
  • 6Porco T, Blower S. HIV vaccines:the effect of the mode of action on the coexistemce of HIV subtypes [J]. Math. Popul. Studies,2000,8:205-221.
  • 7Busenerg S, van Driessche P. Analysis of a disease transimission model in a population with varying size[J]. J. Math. Biol. , 1990,28 : 257-270.

同被引文献22

  • 1周绍聪.我国传染病流行特征[J].浙江预防医学,2001,13(1):1-2. 被引量:20
  • 2张薇薇,梁景青.我国传染病流行现状的分析[J].中华实验和临床病毒学杂志,2004,18(2):194-197. 被引量:16
  • 3Meng Fan,Ke Wang.Optimal harvesting policy for single population with periodic coefficients[J].Math Biosci,1998,152:165-177.
  • 4Clark C W.Bioeconomic modeling and resource emanagement[J].Applied Mathematical Ecology,1989(l):11-57.
  • 5Thacker S B. The persistence of influenza A in human population[J]. Epidemiol Rev. , 1986,8.. 129-142.
  • 6FENG Zhilan,Velasco-Hernandes J. Competitive exclusion in a vector-host model for the dengue fever [J]. J. Math. Biol. , 1997,35 .. 523-544.
  • 7Andreasen V,LIN Juan, Levin S A. The dynamics of co-circulating influenza strains conferring partial cross-immunity[J]. J. Math. Biol. , 1997,35 :825-842. Nuno M,FENG Zhilan, Martcheva M,Castillo-Chavez C. Dynamics of two-strain influenza with isolation and pa.
  • 8rtial cross-immunity[J]. SIAM J. Appl. Math. , 2005,65 (3) .. 964-982.
  • 9Castillo-Chavez C, Hethcote H, Andreasen V, Levin S, LIU Weimin. Epidemiological models with age structure, proportionate mixing and eross-immunity[J] J. Math. Biol. , 1989,27 : 159-165.
  • 10Nowak M,May R M. Superinfection and the evolution of parasite virulence[J]. Proc. Royal Soc. of Lon- don. Series B.. Biological Sciences, 1994,255 : 81-89.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部