期刊文献+

离散系统的广义同步 被引量:1

Generalized Synchronization of Discrete Systems
下载PDF
导出
摘要 讨论两个离散系统之间的广义同步.通过构造合适的非线性耦合项,导出了驱动响应系统获得广义同步的充分条件.在一个正不变的有界集上,许多混沌映射满足这些充分条件.通过3个例子,说明了充分条件的有效性. Generalized synchronization of two discrete systems is discussed.By constructing appropriately nonlinear coupling terms,some sufficient conditions for determining the generalized synchronization between the drive and response systems were derived.In a positive invariant and bounded set,many chaotic maps satisfy the sufficient conditions.The effectiveness of the sufficient conditions is illustrated by three examples.
出处 《应用数学和力学》 CSCD 北大核心 2007年第5期546-550,共5页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10372054 70431002)
关键词 广义同步 耦合 离散系统 generalized synchronization coupling discrete system
  • 相关文献

参考文献11

  • 1Hugenii C.Horoloquium Oscilatorium[M].Paris:Apud F.Muguet,1673.
  • 2Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64(8):821-824.
  • 3Pecora L M,Carroll T L.Driving systems with chaotic signals[J].Phys Rev A,1991,44 (4):2374-2383.
  • 4Boccalettia S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Physics Reports,2002,366(1):1-101.
  • 5MA Zhong-jun,LIU Zeng-rong,ZHANG Gang.A new method to realize cluster synchronization in connected chaotic networks[J].Chaos,2006,16(2):023103.
  • 6ZHANG Gang,LIU Zeng-rong,MA Zhong-jun.Generalized synchronization of different dimensional chaotic dynamical systems[J].Chaos,Solitons and Fractals,2007,32(2):773-779.
  • 7ZHENG Zhi-gang,HU Gang,HU Bam-bi.Phase slips and phase synchronization of coupled oscillators[J].Phys Rev Lett,1998,81(24):5318-5321.
  • 8ZHENG Zhi-gang,HU Gang.Generalized synchronization versus phase synchronization[J].Phys Rev E,2000,62(6):7882-7885.
  • 9刘曾荣.关于同步的几个理论问题[J].自然杂志,2004,26(5):298-300. 被引量:8
  • 10刘曾荣.用结构适应实现不同系统之间的完全同步[J].应用数学与计算数学学报,2004,18(2):68-72. 被引量:6

二级参考文献19

  • 1Pecora L A , Carroll T.S. Synchronization in chaotic systems. Phys Rev Lett , 1990; 64:1196-1199.
  • 2Liang Wu, Shiqun Zhu. Multi-channel communication using chaotic synchronization of multi-mode lasers. Phys Lett A 2003; 308: 157-161.
  • 3Imai Y , Murakawa H, Imoto T. Chaos synchronization characteristics in erbium-doped fiber laser systems. Optics Communications, 2003; 217: 415-420.
  • 4Winfree A T. The Geometry of Biological Time. Berlin:Springer-Verlag, 1980.
  • 5Pei Liuqing, Dai Xinlai, Li Baodong. Chaotic synchronization system and electrocardiogram. Communications in Non-linear Science and Numerical Simulation, 1997 ; 2(1) : 17-22.
  • 6Klimesch Wulfgang. Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 1996; 24(1): 61-100.
  • 7Schack Baerbel, Mescha Swantje, Chen Andrew. The description of synchronization phases during cognitive task by instantaneous EEG and MEG coherence. Electroencephalograph and Clinical Neurophysiology 1997; 103(1) : 157-158.
  • 8Iglesias R, Goncalves S, Pianegonda S, et al. Abramson G. Wealth redistribution in our small world. Phys A. 2003;327: 12-17.
  • 9Xiang Li, Yu Yingjiu, Chen G. Complexity and synchronization of the world trade web. Phys A 2003; 328: 287-296.
  • 10Reggie Brown, Ljupco Kocarev. A unifying definition of synchronization for dynamical systems. Chaos, 2000; 10 (2) : 344-349.

共引文献9

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部