期刊文献+

PDC钻头水力结构优化设计专用软件研究 被引量:6

Development of Professional Software to Optimize Hydraulic Structure of PDC Bits
下载PDF
导出
摘要 利用计算流体动力学技术优化PDC钻头水力结构是一种经济有效的手段。通过对PDC钻头在井底的三维流场数值模拟,考虑喷嘴布置的不同位置、间距及喷射角度等因素的影响,研究流体在井底的流动特性及井底净化机理,优化PDC钻头的水力结构。从工程设计便捷、高效的原则出发,以VB.NET为工具对Phoenics软件进行二次开发,建立专用平台,对不同工况条件下的PDC钻头进行数值模拟。 The technology of Computational Fluid Dynamics has proven to be an economically efficient tool for optimizing the hydraulic structure of PDC bits. In the present study, the advanced development of Phoenics software was carried out by using VB. NET, based on the convenient, highly effective principles in the engineering design. The nozzle layout in terms of bit cutting teeth's position distribution, clearance and the jet angle are analyzed with the numerical simulation for the 3-D flow field of PDC bits, with regard to the fluid characteristic, cleaning mechanism, and the optimization of the hydraulic structure of PDC bits. A specific platform is proposed to improve user experience of the numerical simulation of the PDC bits under different operating mode condition.
出处 《石油矿场机械》 2007年第4期1-4,共4页 Oil Field Equipment
基金 国家自然科学基金"基于钻井系统动力学的井眼轨迹预测理论及控制方法研究"(项目编号:50474040)的部分研究内容"岩石破碎学与钻头研究" 四川省重点实验室项目"PDC钻头水力系统计算流体动力学研究"(项目编号:省室基金007)
关键词 PDC钻头 计算流体动力学 仿真 二次开发 PDC bits computational fluid dynamics (CFD) simulation advanced development
  • 相关文献

参考文献2

  • 1Ledgerwood L W. Advanced hydraulics analysis optimizes performance of roller cone drill bits[S]. SPE 59111.
  • 2姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144. 被引量:213

二级参考文献38

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献212

同被引文献68

引证文献6

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部