期刊文献+

G_3逻辑中的弱合取范式

Weak Conjunctive Normal Form for G_3 Logic
下载PDF
导出
摘要 本文为G3逻辑提出一种类似于经典逻辑中合取范式的弱合取范式,并给出两种范式化简算法:一种是通过公式刻画反模型的语义方法;另一种为基于重写翻译的语法方法。文章最后证明,在G3逻辑中对任意公式做弱合取范式化简不存在多项式算法。 In this paper, we put forward a weak conjunctive normal form for G3 logic, which is similar to the conjunctive normal form for classical propositional logic. We also give two algorithms to reduce a formula to the weak, conjunctive normal form, where one is based on eharaetering counter models in model-based-formulas, and the other is based on rewriting formulas according to transformation rules. In the end, we show that there is no polynomial time algorithm to reduce an arbitrary formula to the weak conjunctive normal form.
出处 《计算机科学》 CSCD 北大核心 2007年第4期158-162,共5页 Computer Science
基金 国家自然科学基金(60573009) 贵州省长基金2005(212)资助
关键词 弱合取范式 G3逻辑 范式化简 计算复杂性 Weak conjunctive normal form, G3 logic, Normal form reduction, Computational complexity
  • 相关文献

参考文献9

  • 1Avron A.Hypersequents,Logical Consequence and Intermediate Logics for Concurrency.Ann Math Artificial Intelligence,1991,4:225~248
  • 2Cabalar P,Pearce D,Valverde A.Reducing Propositional Theories in Equilibrium Logic to Logic Programs.In:12th Portuguese Conference on Artificial Intelligence,Covilh,2005
  • 3Chagrov A,Zakharyaschev M.Modal Logic.Oxford:Clarendon Press,1997
  • 4Ferraris P,Lifschitz V.Mathematical Foundations of Answer Set Programming.In:We Will Show Them! Essays in Honour of Dov Gabbay,Vol 1.Artemov S,Barringer H,Garcez A,Lamb L,and Woods L,College Publications,2005.615~664
  • 5Godel K.Zum intuitionistischen Aussagenkalkül.Anz Akad Wiss Wien,1932,69:65~66
  • 6Hahnle R.Complexity of Many-Valued Logics.In:31st International Symposium on Multiple-Valued Logics,Warsaw,2001
  • 7Lifschitz V,Pearce D,Valverde A.Strongly Equivalent Logic Programs.ACM Transactions on Computational Logic,2001,2(4):526~541
  • 8Pearce D.A New Logical Characterisation of Stable Models and Answer Sets.Non-Monotonic Extensions of Logic Programming,Bad Honnef,1996
  • 9Takeuti G,Titani T.Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set Theory.Journal of Symbolic Logic,1984,49(3):851~866

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部