期刊文献+

基于混合优化策略的自回归—滑动平均模型建模 被引量:4

MODELING OF AUTO-REGRESSIVE MOVING-AVERAGE(ARMA) BASED ON HYBRID OPTIMIZATION STRATEGY
下载PDF
导出
摘要 自回归—滑动平均(ARMA)模型参数估计一直是ARMA模型建模问题的难点和重点,目前的模型参数估计方法都采用传统最小二乘法及其推广算法,预测精度低。采用基于混合优化策略的遗传模拟退火算法进行ARMA模型参数估计,克服了传统算法的缺点,并在此基础上利用遗传模拟退火算法可以确定ARMA阶次的特点,提出基于混合优化策略的ARMA模型建模方法。利用这种建模方法和传统建模方法对组合炮控系统精度进行建模比较,证明基于混合优化策略的ARMA模型建模方法收敛快,精度高。 Estimating parameters of auto-regressive moving-average(ARMA) model is the focus of ARMA. The disadvantages of least-squares algorithm and its generalization algorithm which are used in estimating parameters of ARMA are aimed at. Simulated annealing genetic algorithm based on hybrid optimization strategy is used in estimating parameters of ARMA and it can overcome the disadvantages of the traditional methods. Based on the new algorithm, a new method of modeling ARMA is presented by determinating the autoregressive ordersp and moving-average orders q in ARMA model. Finally, the precision data ARMA model of a mechanical system is built by the new technology and by the traditional modeling method. The new technology proves effective and high-precision by comparing the two models.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第4期229-233,共5页 Journal of Mechanical Engineering
关键词 自回归—滑动平均(ARMA)模型 混合优化策略 遗传模拟退火算法 Auto-regressive moving-average(ARMA) model Hybrid optimization strategy Simulated annealing genetic algorithm
  • 相关文献

参考文献5

  • 1陈果.基于遗传算法的ARMA模型定阶新技术[J].机械工程学报,2005,41(1):41-45. 被引量:15
  • 2AL-SMADI A, WILKERS D. On estimating ARMA model orders[C]//Proceedings-IEEE International Symposium on Circuits and Systems,V2, Circuits and Systems Connecting the World, 1996: 505-508.
  • 3胡代平,刘豹.利用神经网络确定ARMA模型的结构[J].预测,1998,17(4):33-35. 被引量:8
  • 4ALVAREZ R, LUIS J. Support vector method for robust ARMA system identification[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 155-164.
  • 5BOX G EP, JENKINS M. Time series analysis forecasting and control[M]. Holden-Day Inc, 1976.

二级参考文献8

  • 1Liang W, Libert G, Liu B. An Automation ARMA Model Identification System. In: International Conf. of Automation, Robotics and Computer Vision, Singapore, 1992:93-99.
  • 2Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA: Addison-Wesley,1989.
  • 3Cholewo T, Zurada J M. Sequential network construction for time series prediction. In: Proceedings of the IEEE International Joint Conference on Neural Networks, 1997:2 034-2 039.
  • 4Box G E P, Jenkins M. Time Series Analysis Forecasting and Control. Holden-Day Inc, 1976.
  • 5Tsay R S, Tiao G C. Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary ARMA models. Journal of the American Statistical Association, 1984(3): 79-79.
  • 6Steve B, Cyril O. A comparison of box-jenkins and objective methods for determining the order of a nonseasonal ARMA model. Journal of Forecasting, 1994, 13:419-434.
  • 7钟仪信,智能理论与技术-人工智能与神经网络,1992年
  • 8胡代平,刘豹.利用神经网络确定ARMA模型的结构[J].预测,1998,17(4):33-35. 被引量:8

共引文献21

同被引文献27

  • 1王益群,唐勇,姜万录,王宏艳.神经网络软测量模型中全共轭梯度算法[J].机械工程学报,2005,41(6):97-101. 被引量:9
  • 2王益群,王海芳,孙旭光,高英杰,张伟,朱丹丹.基于神经网络的热轧带钢卷取温度预测[J].中国机械工程,2005,16(11):990-992. 被引量:5
  • 3刘载文,王正祥,王小艺,杨斌,程志强.过程神经元网络学习算法及软测量方法的研究[J].系统仿真学报,2007,19(7):1456-1459. 被引量:13
  • 4WANG Yiqun,etal.Appraising and improving on the training algorithm of neural network in the soft measurement system of dynamic flow[C].ICFP'2005(第六届流体传动及控制国际会议),HangZhou,China,2005.102-108.
  • 5Huang Guang-Bin,Chen Lei,Chee-Kheong Siew.Universal Approximation Using Incremental Constructive.Feedforward Networks With Random Hidden Nodes[J].IEEE Transacti-Ons On Neural Networks,July 2006,17(4):879-892.
  • 6J Y Fu,S G Liang,Q S Li.Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks[J].Computers & Structures,2007,85(3-4):179-192.
  • 7SAPANKEVY N, SANKAR R. Time series prediction using support vector machines: a survey [ J]. IEEE Computational Intelligence Magazine, 2009, 4(2):24-38.
  • 8HUANG J C. A genetic algorithm approach to the spectral estimation of time series with noise and missed observations [ J ]. Information Sciences, 2008, 178(24) :4632-4643.
  • 9ALUAREZ R, LUIS J. Support vector method for robust ARMA sys- tem identification[J]. IEEE Trans on Signal Processing, 2004, 52(1) :155-164.
  • 10LEI Kai-you, QIU Yu-hui, WANG Xue-fei, et al. High dimension complex functions optimization using adaptive particle swarm optimizer [ C ]// Proc of the 1 st International Conference on Rough Sets and Knowledge Technology. 2006:321 - 326.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部