期刊文献+

Weibull分布形状参数的收缩估计 被引量:5

Shrinkage Estimation for the Shape Parameter of Weibull Distribution under Type Ⅱ Censoring
下载PDF
导出
摘要 本文研究两参数Weibull分布在Ⅱ形截尾场合下形状参数的收缩估计.提出了形状参数的四个不同的收缩估计,在Minimax遗憾准则下得到了最优收缩系数.通过对这四个收缩信计的效的研究,可知他们在适当的先验信息下都优于原来的估计,其中基于近似无偏估计所得的形状参数的无编估计是比较理想的估计量. In this paper,We consider four shrinkage estimators of the Weibull Shape parameter underType Ⅱcensoring when the prior information of the shape parameters available, The optimalshrinkage cofficients of the above four shrinkage estimators are obtained with the minimax regretcriterion. The efficiency of the four shrinkage estimators of the Weibull shape parameters showsthat they are all better than their original ones in the sense of mean square error when there is theappropriate prior iuformation of the Weibull shape parameter. By comparing these four shrinkageestimators one another, we have recommended that the usual BLUE of the Weibull shape parametercan be replaced by shrinkage cstimator based on the approximate unbiased estimator.
出处 《应用概率统计》 CSCD 北大核心 1997年第1期27-36,共10页 Chinese Journal of Applied Probability and Statistics
基金 航天工业总公司可靠性基础理论基金
  • 相关文献

参考文献6

  • 1费鹤良,产品寿命分析方法,1988年
  • 2团体著者,可靠性试验用表(增订本),1987年
  • 3戴树森,可靠性试验及其统计分析,1983年
  • 4张建中,应用数学学报,1982年,5卷,397页
  • 5陈希孺,数理统计引论,1981年
  • 6冯康,数值计算方法,1978年

同被引文献43

  • 1项静恬,郭世琪.多元回归模型在实际应用中的几种推广[J].数理统计与管理,1994,13(4):48-53. 被引量:17
  • 2王万华.变压器绝缘老化诊断中应注意的问题[J].高电压技术,1995,21(3):79-82. 被引量:25
  • 3张秀芝.Weibull分布参数估计方法及其应用[J].气象学报,1996,54(1):108-116. 被引量:44
  • 4李进,黄敏,赵宇.威布尔分布的极大似然估计的精度分析[J].北京航空航天大学学报,2006,32(8):930-932. 被引量:17
  • 5Xie M, Tang Y, Goh T N. A modified weibull extension with bathtub-shaped failure rate function[ J ]. Reliability Engineering & System Safety, 2002, 76:279-285.
  • 6Gurvieh M R, Dibenedetto A T, Rande S V. A new statistical distribution for characterizing the random strength of brittle materials[ J]. Journal of Materials Science, 1997,32 : 2559 - 2564.
  • 7Wu J W, Lu H L, Chen C H, et al. Statistical inference about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution [J]. Quality and Reliability Engineering International, 2004, 20:607 - 616.
  • 8Nadarajah S, Kotz S. On some recent modifications of Weibull distribution[J]. IEEE Transaction on Reliability, 2005, 54(4):561 - 562.
  • 9Singh H P, Saxena S, Joshi H. A family of shrinkage estimators for weibull shape parameter in censored sampling[J]. Statistical Papers, 2008, 49(1) :513 - 529.
  • 10Johnson N L, Kotz S, Balakrishnan N. Continuous Univariate Distributions[M]. Wiley, Singapore, 2004,1.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部