摘要
在白噪声分析的框架中,我们给出了广义Weiner泛函空间上的梯度算子和散度算子的定义与公式,并利用梯度和散度算子以及适应投影建立了广义泛函的表示公式.也证明了积分核算子可用梯度与散度算子表出.
In the framework of white noise analysis initiated by T. Hida, we give the denfinitions andforlmulae of multivariate gradient and divergent operators on the generalized Wiener functionalspace, and the representation formula for generalized functionals by using gradent and divergentoperators and adapted projection. It is also shown that integral kernel operators can be expressedin terms of gradient and divergent operators.
出处
《应用概率统计》
CSCD
北大核心
1997年第1期63-74,共12页
Chinese Journal of Applied Probability and Statistics
关键词
白噪声分析
梯度算子
散度算子
积分核算子
white noise analysis, gradient operator, divergent operator, integral kernel operator