期刊文献+

基于融合策略自适应的多线索跟踪方法 被引量:21

An Adaptive Fusion Strategy Based Multiple-Cue Tracking
下载PDF
导出
摘要 基于多线索融合的跟踪是跟踪领域近年来的研究热点之一,该文结合两种常用的线索融合方式:乘性融合及加权和融合,提出一种融合策略自适应的鲁棒跟踪方法。该方法使用粒子滤波技术,统计样本的二阶中心矩并求Frobenius范数以表征线索的受噪声污染程度,最后适时切换两种融合策略。实践证明,新的融合策略比传统单一的融合方式更鲁棒。 Multiple cue fusion based tracking is one of the most active research in tracking literature. In this paper, a novel adaptive fusion strategy is proposed for multiple cue fusion, base on two common used fusion rules: product rule and weighted sum rule. This strategy employs particle filtering technique, estimating second order moment of the weighted sample set and computing its Frobenius norm to denote how cues are reliable, and then switch the two fusion rules in time. In practice, the new fusion strategy shows more robustness than traditional single fusion rule.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第5期1017-1022,共6页 Journal of Electronics & Information Technology
基金 创新群体研究资助计划(60021302) 国家自然科学基金(60405004) 西安交通大学电信学院青年教师科研基金资助课题
关键词 跟踪 粒子滤波 多线索 融合 Tracking Particle filtering Multiple cue Fusion
  • 相关文献

参考文献13

  • 1]Shen C H,Hengel A,and Dick A.Probabilistic multiple cue integration for particle filter based tracking.Proc.Ⅶth Digital Image Computing:Techniques and Applications,Melbourne,Australia,2003,Ⅰ:399-408.
  • 2Li P H and Chaumette F.Image cues fusion for object tracking based on particle filter.F J Perales and B A Draper (Eds.):AMDO 2004,LNCS 3197:99-107.
  • 3Leichter I,Lindenbaum M,and Rivlin E.A Probabilistic framework for combining tracking algorithms.Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Washington,USA,2004,(2):445-451.
  • 4Spengler M and Schiele B.Towards robust multi-cue integration for visual tracking.International Journal of Machine Vision and Applications,2003,(14):50-58.
  • 5Collins R and Liu Y.On-line selection of discriminative tracking features.Proceedings of International Conference on Computer Vision,Nice,France,2003:346-352.
  • 6Toyama K and Hager G.Incremental focus of attention for robust vision-based tracking.International Journal of Computer Vision,1999,35(1):45-63.
  • 7Kittler J and Hatef M,et al..On combining classifiers.IEEE Trans.on PAMI,1998,20:226-238.
  • 8Triesch J and Malsburg C.Democratic integration:self-organized integration of adaptive cue.Neural Computation 2001,13:2049-2074.
  • 9Jacobs R.What determines visual cue reliability? Trends in Cognitive Sciences,2002,6(8):345-350.
  • 10Arulampalam S,Maskell S,Gordon N,and Clapp T.A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking.IEEE Trans.on Signal Processing,2002,50(2):174-188.

同被引文献203

引证文献21

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部