期刊文献+

一种新的基于曲线拟合的干涉光谱图像压缩算法 被引量:2

A Novel Coding Algorithm for Interference Hyper-Spectral Images Based on Classification and Curve-Fitting
下载PDF
导出
摘要 干涉光谱图像具有自身的特点,相邻谱线之间的相关性较弱,谱线数据也有自身的特征,主干涉区域数据变化剧烈,而其它区域的数据呈现单调变化的趋势。根据这些特点,该文提出一种数据区域分类方法对光谱数据进行分类处理,将一根谱线的数据分为主干涉区域与非主干涉区域两类,主干涉区域采用数据相似匹配进行描述,而对非主干涉区域采用二次曲线拟合方法进行数据分析,这种数据分析方法有利于提高该类图像编码效率。仿真结果表明,该方法可以降低无损压缩输出码率达0.2-0.4bpp,并且可以提高有损压缩压缩效率。 Interference spectral images have their own features. The correlations between the spectral lines are weak. And the data in a spectral line have particularity, that is, the data vary abruptly in the main district and the rest data change monotonously. On the basis of analyzing the particularity, a novel method for data classification is proposed. The data of a spectral line are decomposed to two classes, called main-interference class and no main-interference class. And a similarity-based match method is presented for the data of main-interference class, while the data of no main-interference class is processed by another method called 2-order curve-fitting algorithm. The data of a spectral line can be approached appropriately in the ways discussed above, which avails for image compression. The experimental results show that the output rate decreases by 0.2-0.4bpp for lossless compression, and also can improve the loss compression efficiency.
作者 邓家先 黄艳
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第5期1140-1144,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点项目(60532060) 海南省教育厅科研基金(Hjkj200602) 海南省自然科学基金(80551)资助课题
关键词 图像处理 图像压缩 二次曲线拟合 相似匹配 无损压缩 Image processing Image compression 2-order curve-fitting Similarity-based match Lossless compression
  • 相关文献

参考文献11

  • 1吴小华,李自田,张帆.干涉超光谱图像分析与近无损压缩CPLD实现[J].光子学报,2005,34(9):1346-1350. 被引量:17
  • 2ISO/IEC JTC 1/SC 29/WG1 FCD 14495 public draft,July 16,1997; http://www.jpeg.org/public/jpeglinks.htm.
  • 3Wu Xiaojun.An algorithmic study in lossless image compression.Proceedings of the 1996 Data Compression Conference,Snowbird,Utah,April 1996:150-159.
  • 4Golomb S W.Run-length encodings.IEEE Trans.on Information Theory,1966,12(3):399-401.
  • 5Weinberger M J,Seroussi G,and Sapiro G.LOCO-Ⅰ:A low complexity,context-based,lossless image compression algorithm.Proceedings Data Compression Conference,Snowbird,Utah,April 1996:140-149.
  • 6Ranganathan N.A lossless image compression algorithm using variable block size segmentation.IEEE Trans.on Image Processing,1995,4(10):1396-1406.
  • 7Rane S D and Sapiro G.Evaluation of JPEG-LS,the new lossless and controlled-lossy still image compression standard for compression of high-resolution elevation data.IEEE Transactions on Geoscience and Remote Sensing,2001,39(10):2298-2306.
  • 8Taubman D.High performance scalable image compression with EBCOT.IEEE Trans.on Image Processing,2000,9(7):1151-1170.
  • 9Taubman D,Ordentlich E,Weinberger M,and Seroussi G.Embedded block coding in JPEG 2000.Signal Processing -Image Communication,2002,17(1):49-72.
  • 10Christopoulos C,Askelof J,and Larsson M.Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard.IEEE Signal Processing Letters,2000,7(9):247-249.

二级参考文献4

  • 1吴乐南.数据压缩[M].北京:电子工业出版社,2003,9..
  • 2侯伯亨 顾新.VHDL硬件描述语言与数字逻辑电路设计.修订版[M].西安:西安电子科技大学出版社,2001.9..
  • 3Mailjes C, Vermande P, Castanie F. Spectal image compression. J Optics (Paris), 1990,21 (3): 121132.
  • 4相里斌,赵葆常,薛鸣球.空间调制干涉成像光谱技术[J].光学学报,1998,18(1):18-22. 被引量:86

共引文献16

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部