摘要
SiC thin-films were prepared by RF-magnetron sputtering technique(RMS) with the target of single crystalline SiC and then annealed. The surface morphology of thin-films was characterized by AFM. The result shows that the surface of the thin-films is smooth and compact; XRD analysis reveals that the thin-films are amorphous. The thickness, square-resistance and curves of resistance—temperature were measured. The results show that the curves of lnR versus 1/kT both before and after annealing satisfy the expression of lnR∝△W/kT, where ?W is electron excitation energy in the range of 0.014 2-0.018 5 eV, and it has a trend of increasing when the temperature is increased. After synthetical analysis we get the conclusion that the electronic mechanism of the thin-films is short distance transition between the localized states in the temperature range of 25-250 ℃. The resistivity is in the range of 2.4×10-3-4.4×10-3 Ω·cm and it has the same trend as electron excitation energy when annealing temperature is increased, which further confirms the electronic mechanism of thin-films and the trend of electron excitation energy versus annealing temperature.
SiC thin-films were prepared by RF-magnetron sputtering technique(RMS) with the target of single crystalline SiC and then annealed. The surface morphology of thin-films was characterized by AFM. The result shows that the surface of the thin-films is smooth and compact; XRD analysis reveals that the thin-films are amorphous. The thickness, square-resistance and curves of resistance--temperature were measured. The results show that the curves of liaR versus 1/kT both before and after annealing satisfy the expression of lnR∝△W/kT, where △W is electron excitation energy in the range of 0.014 2-0.018 5 eV, and it has a trend of increasing when the temperature is increased. After synthetical analysis we get the conclusion that the electronic mechanism of the thin-films is short distance transition between the localized states in the temperature range of 25-250℃. The resistivity is in the range of 2.4 × 10^-3 - 4.4 × 10^-3 Ω·cm and it has the same trend as electron excitation energy when annealing temperature is increased, which further confirms the electronic mechanism of thin-films and the trend of electron excitation energy versus annealing temperature.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2007年第2期373-377,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(60371046) supported by the National Natural Science Foundation of China
关键词
SIC薄膜
RF-磁控管溅射法
沉积
结构
电学性质
amorphous SiC thin-films
surface morphology
electron excitation energy
resistivity