摘要
通过结合非线性过程的一般模型控制(GMC)、强跟踪预测器(STP)和强跟踪滤波器(STF),本文提出了一类具有输入时滞非线性时变过程的传感器主动容错控制方法.基于强跟踪预测器对未来状态的预测,传统的一般模型控制被扩展到一类具有输入时滞的非线性过程.然后采用强跟踪滤波器估计过程状态及传感器偏差,传感器偏差估计用于驱动一个故障检测逻辑.当某一传感器故障被检测出来时,STF的状态估计值将用于重构过程输出(代替真实输出),此重构输出被STP用于继续进行状态预测,从而确保系统性能.最后,三容水箱系统仿真结果证明该方法的有效性.
Combining the generic model control (GMC), the strong tracking predictor (STP) and the strong tracking filter (STF), we propose an sensor active fault tolerant control approach for a class of nonlinear time-varying processes with input time delay. Based on the predicted future states from the STP, the conventional generic model control is extended to a class of nonlinear process with input time delay. Then, the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output(instead of real outputs), which is used by the STP to give state predictors and insure system performance. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.
出处
《传感技术学报》
CAS
CSCD
北大核心
2007年第5期980-984,共5页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金资助项目(60574084)
关键词
传感器
容错控制
时滞
非线性
强跟踪预测器
强跟踪滤波器
sensor
fault tolerant control
time-delay
nonlinear
strong tracking predictor
strong trackingfilter