期刊文献+

基于案例推理的磨矿分级系统智能设定控制 被引量:16

Intelligent Control Setting with CBR for Ore Grinding-Classification System
下载PDF
导出
摘要 针对磨矿分级过程的关键工艺指标磨矿粒度难以用常规控制方法进行有效控制的难题,将智能设定方法与常规控制相结合,提出了基于案例推理的磨矿分级系统智能设定控制方法.以粒度指标的区间控制为目标,依据边界条件和运行工况等信息,由智能设定模型自动更新各基础控制回路的设定值,避免了人工设定的主观性及随意性,各控制回路跟踪更新的设定值,从而将粒度控制在目标范围内.该方法已成功应用于某赤铁矿选厂的磨矿分级过程,应用效果表明提出的方法是有效的. Particle size is a key technical index in ore grinding-classification process, which is difficult to control effectively with conventional loop control strategies. An intelligent control setting approach based on CBR for the grinding-classification system is proposed by combining intelligent method with conventional loop control. Aiming at the interval control of the particle size index and according to the information on boundary conditions and current operating conditions, a model is .set intelligently to update automatically all the basic loop setpoints, thus avoiding the subjectivity and randomicity arising from arbitrary process control setting. Then, the outputs from control loops can track down the updated setpoints relevantly to control the particle size within the target zone. The approach proposed has successfully been applied to the grinding- classification process of a hematite ore processing plant, and its effectiveness is proved evidently.
作者 周平 柴天佑
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期613-616,共4页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展计划项目(2002CB312201) 国家自然科学基金重点资助项目(60534010) 国家创新研究群体科学基金资助项目(60521003) 长江学者和创新团队发展计划项目(IRT0421)
关键词 智能设定控制 案例推理 磨矿分级系统 磨矿粒度 区间控制 intelligent control setting case-based reasoning ( CBR) grinding-classification system particle size interval control
  • 相关文献

参考文献9

  • 1周平,岳恒,赵大勇,柴天佑.基于案例推理的软测量方法及在磨矿过程中的应用[J].控制与决策,2006,21(6):646-650. 被引量:18
  • 2Zhou P,Chai T Y,Yue H,et al.Intelligent optimal control of grinding circuits for optimization of particle size index[C]∥Proceedings of the 6th WCICA.Piscataway:IEEE,2006:6586-6591.
  • 3Ramasamv M,Narayanan S S,Rao C D P.Control of ball mill grinding circuit using model predictive control scheme[J].Journal of Process Control,2005,15(3):273-283.
  • 4Radharkrishnan V R.Model based supervisory control of a ball mill grinding circuit[J].Journal of Process Control,1999,19(3):195-211.
  • 5Najim K,Hodouin D,Desbiens A.Adaptive control:state of the art and application to a grinding process[J].Powder Technology,1995,82(1):59-68.
  • 6Stange W.Using artificial neural networks for the control of grinding circuits[J].Minerals Engineering,1993,6(5):479-489.
  • 7Chan F T S.Application of a hybrid case-based reasoning approach in electroplating industry[J].Expert System with Application,2005,29(1):121-130.
  • 8周平,丁进良,岳恒,柴天佑.基于相似粗糙集的案例特征权值确定新方法[J].信息与控制,2006,35(3):329-334. 被引量:15
  • 9Guan S P,Li H X,Tso S K.Multivariable fuzzy supervisory control for the laminar cooling process of hot rolled slab[J].IEEE Transactions on Control Systems Technology,2001,9(2):348-356.

二级参考文献24

  • 1熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制,2004,33(6):754-757. 被引量:7
  • 2柴天佑,杨辉,张肃宇,李健.稀土萃取分离过程综合自动化系统[J].控制工程,2005,12(1):1-7. 被引量:9
  • 3谭明皓,柴天佑.基于案例推理的层流冷却过程建模[J].控制理论与应用,2005,22(2):248-253. 被引量:24
  • 4Yang Y X,Chai T Y.Soft Sensing Based on Artificial Neural Network[A].Proc of the American Control Conf[C].Albuquerque:IEEE,1997:674-678.
  • 5Grant P W,Harrism P M,Moseley L G.Fault Diagnosis for Industrial Printers Using Case-based Reasoning[J].Engineering Application of Artificial Intelligence,1996,9(2):163-173.
  • 6Hsu C C,Ho C S.A New Hybrid Case-based Architecture for Medical Diagnosis[J].Information Sciences,2004,166(1-4):231-247.
  • 7Kohno T,Hamada S,Araki D,et al.Error Repair and Knowledge Acquisition via Case-based Reasoning[J].Artificial Intelligence,1997,91(1):85-101.
  • 8Fdez-Riverola F,Corchado J M.CBR Based System for Forecasting Red Tides[J].Knowledge-based Systems,2004,16(5-6):321-328.
  • 9Althoff K D,Bergmann R,Wess S,et al.Cased-based Reasoning for Medical Decision Support Tasks:The Inreca a Approach[J].Artificial Intelligence in Medicine,1998,12(2):25-41.
  • 10Slonima T Y,Schneider M.Design Issues in Fuzzy Case-based Reasoning[J].Fuzzy Sets and Systems,2001,117(2):251-267.

共引文献31

同被引文献102

引证文献16

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部