期刊文献+

负顾客可服务的Geom/Geom/1离散时间排队模型 被引量:7

A class of Geom/Geom/1 discrete-time queueing system with negative customers
下载PDF
导出
摘要 研究了一个单服务台的离散时间排队模型,正负顾客的到达服从几何分布,并且可以同时到达,正负顾客处于同等的位置.给出了两种抵消规则:抵消队尾的顾客,无论此顾客是否正在接受服务;抵消队尾的顾客,此顾客不在接受服务.负顾客到达后分别以这两种不同的抵消规则抵消系统中的正顾客;如果负顾客到达后,系统为空,则负顾客和正顾客一样,接受服务.通过求解方程组,得到这一模型的系统队长和等待队长的概率母函数以及系统队长和等待队长的稳态分布. Negative arrivals are widely used as a control mechanism in many telecommunication and computer networks. A discrete-time single-server queue with geometrical arrival of both positive and negative customers is analysed. The customers may arrive at the same time and negative customers can be served as positive customers. There are two cases: negative customers remove positive customers from the end of the queue in which the customer currengly being serviced can and cannot be replaced by a negative customer. When negative customers arrive, there is no customer, and negative customers can be serviced. The probability generating function of the number of customers in the waiting line and the steady-state distribution of the waiting line size are obtained.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2007年第3期266-268,276,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(70571030 10571076) 江苏大学科研启动基金资助项目(04JDG032)
关键词 离散时间排队 负顾客 RCE—inimmune SERVICING RCE—immune SERVICING 抵消规则 discrete-time queue negative customers removal of customer at the end-inimmune servicing removal of customer at the end-immune servicing killing policies
  • 相关文献

参考文献5

  • 1Gelenbe E.Queues with negative arrivals[J].J Appl Prob,1991(28):245-250.
  • 2Atencia I,Moreno P.A single-server G-queue in discrete-time with geometrical arrival and service process[J].Performance Evaluation,2005,59:86-97.
  • 3Atencia I,Moreno P.The discrete-time Geo/Geo/1 queue with negative customers and disasters[J].Comput Oper Res,2004,31:1537-1548.
  • 4田乃硕.休假随机服务系统[M].北京:北京大学出版社,2002.148-162.
  • 5曲子芳,朱翼隽,杜贞斌.负顾客M/G/1可修排队系统[J].江苏大学学报(自然科学版),2003,24(3):20-23. 被引量:10

二级参考文献9

  • 1史定华,张文国.具有多重延误休假的可修排队系统M^x/G(M/G)/1(M/G)分析[J].应用数学学报,1994,17(2):201-214. 被引量:24
  • 2Gelenbe, E. Queues with negative arrivals[J]. J Appl Prob, 1991(28) : 245 - 250.
  • 3Harrison, Pitel. Sojourn Times in Single Server Queues with Negative Customers [ J ]. J Appl prob, 1993 (30) :943 - 963.
  • 4Harrison, Pitel. The M/G/1 Queue with Negative Customers[J] .A Appl Prob, 1996(28) : 540 - 566.
  • 5Bayer. Boxma Wiener-Hopf Analysis of an M/G/1 Queue with Negative Customers and of a Related Class of Random Walks [ J ]. Queueing Systerms, 1996 (23) : 301 -316.
  • 6Artalejo, Corral. On a Single Service Queue with Negative Arrivals and Request Repeated [ J ]. J Appl Prob,1999(36) : 907 -918.
  • 7Zhu Yijun. Analysis on a Type of M/G/1 Models with Negative Arrivals[C]. Proceeding of the 27^th Stochastic Process Conference, UK ,2001.
  • 8杜贞斌,朱翼隽,肖江,陈洋.负顾客的M/G/1排队模型[J].江苏大学学报(自然科学版),2002,23(3):91-94. 被引量:20
  • 9陈洋,朱翼隽,卫飚.具有两种故障状态的M/G/1可修排队系统[J].江苏大学学报(自然科学版),2002,23(5):5-8. 被引量:7

共引文献10

同被引文献42

  • 1马占友,田乃硕,金顺福.单重休假的Geom~■/G/1排队系统[J].燕山大学学报,2006,30(4):287-292. 被引量:2
  • 2杨云云,马占友,李艳兰,陈利.基于Geom/Geom/(Geom/Geom)的双输入排队系统[J].辽宁工程技术大学学报(自然科学版),2012,31(4):573-576. 被引量:4
  • 3侯玉梅.在修后逐出规则下服务台可修的离散时间Geometric/G/1排队系统[J].工科数学,1998,14(4):10-15. 被引量:1
  • 4曲子芳,朱翼隽,杜贞斌.负顾客可服务的M/G/1可修排队[J].江苏大学学报(自然科学版),2005,26(B12):46-50. 被引量:1
  • 5HARRISON P G, PITEL E. Sojourn times in single server queues with negative eustomers[J]. J Appl Prob, 1993, 30:943-963.
  • 6BOUCHERIE R J, BOXMA O J. The workload in the M/G/1 queue with work removal[J]. Probability in the Engineering and informational sciences, 1996, 10:261-277.
  • 7NEUTS M. Matrix-geometric solution in stochastic models[M]. Baltimore: Johns Hopkins University Press, 1981.
  • 8Gelenbe E,Glynn P,Sigman K.Queues with negative arrivals[J].Journal of Applied Probability,1991,28:245 -250.
  • 9Zhu Yijun.Analysis on atype of M/G/1 models with negative arrivals[C] ∥ Proceeding of the 27th Swchastic Press Conference.UK:University of Cambrige,2001.
  • 10Hunter J J. Mathematical Techniques of Applied Probability, Vol. II[M]. New York: Academic Press, 1983.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部