摘要
研究了一个单服务台的离散时间排队模型,正负顾客的到达服从几何分布,并且可以同时到达,正负顾客处于同等的位置.给出了两种抵消规则:抵消队尾的顾客,无论此顾客是否正在接受服务;抵消队尾的顾客,此顾客不在接受服务.负顾客到达后分别以这两种不同的抵消规则抵消系统中的正顾客;如果负顾客到达后,系统为空,则负顾客和正顾客一样,接受服务.通过求解方程组,得到这一模型的系统队长和等待队长的概率母函数以及系统队长和等待队长的稳态分布.
Negative arrivals are widely used as a control mechanism in many telecommunication and computer networks. A discrete-time single-server queue with geometrical arrival of both positive and negative customers is analysed. The customers may arrive at the same time and negative customers can be served as positive customers. There are two cases: negative customers remove positive customers from the end of the queue in which the customer currengly being serviced can and cannot be replaced by a negative customer. When negative customers arrive, there is no customer, and negative customers can be serviced. The probability generating function of the number of customers in the waiting line and the steady-state distribution of the waiting line size are obtained.
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2007年第3期266-268,276,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(70571030
10571076)
江苏大学科研启动基金资助项目(04JDG032)