摘要
针对一类常微分方程奇摄动边值问题,介绍了用Vasil’eva边界层函数法来构造Nagumo定理中的上下解,并用微分不等式证明了解的存在性和进行了余项估计,用边界层函数法来构造上下解更具有普遍性,且使用方便。
This paper discussed a kind of singularly perturbed ODE with boundary value. The upper and lower solutions defined in Nagumo Theorem by means of Vasil'eva's boundary layer function method were contructed. Actually, it is of great universality and easy to use. After the construction, the existence of the solution of this singularly perturbed problem and estimation of the remainder terms with differential estimation of inequalities was proved.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第3期1-10,共10页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(10671070)
上海市教育委员会E-研究院建设项目(E03004)
地理信息科学教育部重点实验室开放课题
上海市浦江人才计划(05PJ14040)
关键词
奇摄动
渐近解
上下解
singular perturbation
asymptotic solution
upper and lower solutions