期刊文献+

边界层函数法在微分不等式中的应用 被引量:8

Application of Boundary Layer Function Method in Differential Inequality
下载PDF
导出
摘要 针对一类常微分方程奇摄动边值问题,介绍了用Vasil’eva边界层函数法来构造Nagumo定理中的上下解,并用微分不等式证明了解的存在性和进行了余项估计,用边界层函数法来构造上下解更具有普遍性,且使用方便。 This paper discussed a kind of singularly perturbed ODE with boundary value. The upper and lower solutions defined in Nagumo Theorem by means of Vasil'eva's boundary layer function method were contructed. Actually, it is of great universality and easy to use. After the construction, the existence of the solution of this singularly perturbed problem and estimation of the remainder terms with differential estimation of inequalities was proved.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期1-10,共10页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10671070) 上海市教育委员会E-研究院建设项目(E03004) 地理信息科学教育部重点实验室开放课题 上海市浦江人才计划(05PJ14040)
关键词 奇摄动 渐近解 上下解 singular perturbation asymptotic solution upper and lower solutions
  • 相关文献

参考文献4

  • 1Васильева А Б,Бутузов В Ф.Асимцтотические раэложения рещений сингул ярно возмущенных уравний[M].Москва:Наука,1973.
  • 2Васильева А Б,Бутузов В Ф.Асимцтотические методы в теории сингулярных возмушений[M].Москва:Высшая школа,1990.
  • 3NAGUMO M.Uber die Differentialgleichung[J].Proc Phys Math Soc Japan,1937,19:861-866.
  • 4CHANG K W,HOWES F A.Nonlinear Singular Perturbation Phenomena:Theory and Applications[M].New York:Springer-Verlag,1984.

同被引文献57

  • 1程燕.半线性奇摄动椭圆型方程边值问题的渐近解(英文)[J].数学杂志,2005,25(1):25-29. 被引量:1
  • 2张祥.Volterra型积分微分方程非线性边值问题[J].Journal of Mathematical Research and Exposition,1995,15(1):75-82. 被引量:16
  • 3莫嘉琪.非线性分数阶微分方程的奇摄动[J].应用数学学报,2006,29(6):1085-1090. 被引量:10
  • 4FRIEDRICHS K O.The Theory of Viscous Fluids.Fluid Dynamics[M].Providence,Brown University,1941.
  • 5KEVORKIAN J,COLE J D.Perturbation Method in Applied Mathematics[M].New York,Springer-verlag,1981.
  • 6AZIZ A,NAT Y.Perturbation Method in Heat Transfer[M].New York,Hhemisphere Publishing Corporation,1984.
  • 7BEJAN A.Convection Heat Transfer[M].New York,John Wiley,1984.
  • 8WASOW W.Asymptotic solution of bounary value problem for the differential equation Δu+λ(/ x)u=λf(x,y)[J].Duke Math J,1944(11):405-415.
  • 9LEVINSON N.The first boundary value problem for εΔu+Aux+Buy+Cu=D for small ε[J].Anals of Math,1950,51,428-455.
  • 10SHIH,KELLOGG.Symptotic analysis of a singluar perturbation problem[J].SIAM J Math Anal,1987,18,1467-1511.

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部