期刊文献+

挤压后交叉轧制的镁合金薄板组织研究 被引量:10

Microstructure of Magnesium Alloy Thin Plate Cross-rolled after Extrusion
下载PDF
导出
摘要 研究了退火制度对挤压后交叉轧制的镁合金薄板组织结构影响。结果表明:挤压+交叉热轧组织是由混晶组织还是由含有板条状组织组成,主要取决于挤压板的组织;在温度大于350℃,保温时间大于60min的退火制度下少数的粗大等轴晶作为异常长大时的“核心”,吞噬周围小晶粒,使混晶组织转变成粗大等轴晶组织,即挤压组织的“遗传性”;挤压薄板或板坯时挤压比、温度、挤压速度等因素是镁合金获得均匀等轴晶组织、避免出现混晶组织及板条状组织的保证;最佳退火制度:保温温度250 ̄300℃,保温时间20 ̄30min,此时合金由分布均匀、细小等轴晶组成,具有最佳温拉深成形性能。 The influence of different annealing process on microstructure of magnesium alloy thin plate cross-rolled after extrusion was studied, The result shows that the structure after extrusion plus cross-hot-rolling consists of the mixed grain structure or the lath structure. The final structure depends on the thin plate structure after extrusion. When the annealing temperature is higher than 350℃ and the holding time is more than 60min, a few large equiaxed grains become the cores of abnormal grain growth. They phagocyte near grains and make the mixed grain structure change to the large equiaxed grain structure. This is called as extrusion structure heredity. Extrusion ratio,extrusion temperature and extrusion speed are the assurances of obtaining equal equiaxed grain structure. And the mixed grain structure and the lath structure could be avoided, The best annealing process: the heating temperature 250-300℃, and the holdiing time 20-30min. In these process the alloy consists of equiaxed and refined grains, It has the best formability of hot drawing.
出处 《热加工工艺》 CSCD 北大核心 2007年第9期1-5,共5页 Hot Working Technology
基金 国家"八六三"计划资助项目(2003AA331120) 江苏大学资助项目(05JDG009)
关键词 镁合金 挤压 轧制 温拉深 退火 magnesium alloy extrusion rolling hot drawing annealing
  • 相关文献

参考文献15

二级参考文献100

  • 1汪凌云,范永革,黄光杰,黄光胜,潘复生,刘正宏.AZ31B镁合金板材的织构[J].材料研究学报,2004,18(5):466-470. 被引量:26
  • 2黄良余.铝硅合金变质机理的新发展和新观点(上)[J].特种铸造及有色合金,1995,15(4):30-32. 被引量:46
  • 3曹富荣,崔建忠,雷方,乐启炽.超轻镁合金的研究历史与发展现状[J].材料工程,1996,24(9):3-5. 被引量:27
  • 4Cahn R W 丁道云(译).非铁合金的结构与性能[M].北京:科学出版社,1999..
  • 5[1]Watanabe H, Mukai T. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy[J]. Acta Mater, 1999, 147(14): 3753-3758.
  • 6[2]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. A study on barrelling in magnesium alloy solid cylinders during cold upset forming[J]. Journal of Materials Processing Technology, 2000, 101: 64-69.
  • 7[3]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. Uniaxial tensile behaviour of ZM-21 magnesium alloy at room temperature[J]. Journal of Materials Processing Technology, 2000, 102: 56-58.
  • 8[4]Huang J C, Chuang T H. Progress on superplasticity and superplastic forming in Taiwan during 1987-1997[J]. Materials Chemistry and Physics, 1999, 57: 195-206.
  • 9[5]Bussiba A, Ben A A. Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies[J]. Materials Science and Engineering A, 2001, 302: 56-62.
  • 10[6]Mabuchi M, Iwasaki H, Higashi K. Low temperature superplasticity of magnesium alloy processed by equal channel angular extrusion (ECAE) [J]. Materials Science Forum, 1997, 243-245: 547-552 .

共引文献683

同被引文献100

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部