期刊文献+

基于节点迁移的电力系统并行计算优化分割策略 被引量:8

Node Migration Based Optimized Network Partitioning Strategy for Power System Parallel Computation
下载PDF
导出
摘要 利用基于拉普拉斯谱划分的递归二分法将电力网络进行支路切割,然后将支路切割转换为节点撕裂。在转换过程中使用了一种优化的支路排序策略,以减小边界块,从而减小协调计算时间,提高并行效率。通过计算迁移节点目标函数,减小了分割的不平衡度。在IEEE标准网络上,用并行潮流算法对分割的网络进行测试计算。结果表明,该优化策略有效减小了边界块,适合电力系统并行计算。 The optimized partitioning for parallel computing of power network is researched. By means of Laplacian spectrum recursive bisection partitioning method, firstly the power network is partitioned into branch-cut form; then the branch-cut form is changed into node-split form. During the change process an optimized branch sort scheme is used to minimize border blocks; thus the time consumed in coordinative calculation is saved. By means of calculating the objective function of migrated nodes, the unbalance of partitioning is ,educed. The testing calculations for partitioned network are conducted in IEEE 118-bus system, IEEE 162-bus system and IEEE 300-bus system respectively by parallel power flow algorithm. Calculation results show that the proposed optimized partitioning strategy can reduce bordered blocks effectively, so it is proved that the proposed optimized partitioning strategy is suitable for power system parallel computing.
出处 《电网技术》 EI CSCD 北大核心 2007年第11期42-48,共7页 Power System Technology
关键词 对角块加边 并行计算 拉普拉斯谱 网络分割 电力系统 bordered block diagram form (BBDF) parallelcomputing Laplacian spectrum network partition powersystem
  • 相关文献

参考文献23

二级参考文献89

  • 1汪芳宗.电力系统暂态稳定性并行牛顿计算方法[J].电力系统自动化,1995,19(9):5-9. 被引量:5
  • 2贺仁睦,周庆捷,郝玉国.电力系统机-网暂态仿真的并行算法[J].中国电机工程学报,1995,15(3):179-184. 被引量:8
  • 3周树荃 梁维泰 等.有限元结构分析并行计算[M].北京:科学出版社,1999..
  • 4胡冠章.现代应用数学手册.离散数学卷:组合数学与图论[M].北京:清华大学出版社,2002..
  • 5都志辉.高性能计算并行编程计算--MPI并行程序设计[M].北京:清华大学出版社,2001..
  • 6韩晓言,韩祯祥.电力系统暂态稳定分析的内在并行算法研究[J].中国电机工程学报,1997,17(3):145-148. 被引量:17
  • 7都志辉.高性能计算并行编程计算—MPI并行程序设计[M].北京:消华大学出版社,2001..
  • 8Biggs N L. Algebraic Graph Theory. Cambridge: Cambridge University Press, 1974.
  • 9Grone R, Merris R, Sunder V. The Laplacian spectrum of a graph. SIAM J Matrix Anal Appl, 1990, 11 (2): 218-238.
  • 10Merris R. Laplacian matrices of graphs: A survey. Linear Algebra and Its Applications, 1994, 197/198:143-176.

共引文献193

同被引文献149

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部