期刊文献+

关于幂零群一个定理的推广 被引量:9

A generalization about a theorem of the Nilpotent Group
下载PDF
导出
摘要 引进了半幂零群的概念,证明了关于它的一些性质,由这些性质和Frobenius定理得到了半幂零群可解.特别地,推广了Schmidt-Iwasawa的著名定理. A new concept of semi-nilpotent groups is introduced. Some properties of it are proved. It follows from these properties and the Frobenius' theorem that a semi-nilpotent group is solvable, In particular, Schmidt-Iwasawa' s famous theorem is generalized.
作者 曾利江
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第4期91-94,共4页 Journal of Shandong University(Natural Science)
关键词 可解群 半幂零群 超中心 SYLOW子群 solvable group semi-nilpotent group hypercenter Sylow subgroup
  • 相关文献

参考文献1

  • 1W Scott.Group theory[M].Englewood Cliffs:Prentice-Hall,1964.272~ 276.

同被引文献40

  • 1黄建红,郭文彬.有限群的s-条件置换子群[J].数学年刊(A辑),2007,28(1):17-26. 被引量:16
  • 2徐明曜.有限群导引[M].北京:科学出版社,2007.
  • 3Green J A. On the indeeomposable representations of finite group[J]. Math Z, 1959,70:430-445.
  • 4Brauer R, Nesbitt C J. On the modular representation of groups of finite order Ⅰ[J]. Univ of Toronto Studies Math Ser,1937,4:159-170.
  • 5Brauer R, Tate J. On the characters of finite groups[J]. Ann of Math,1962,2:1-7.
  • 6Benard M. Schur indices and cyclic defect groups[J]. Ann of Math,1976,103:283-304.
  • 7Brauer R, Feit W. On the number of irreducible characters of finite groups in a given block[J]. Proc Nat Acad Sci U. S. A,1959,45:361-365.
  • 8Brauer R. Representations of Finite Groups, Lectures on Modern Mathematics[M]. Wiley, New York,1963,1:133-175.
  • 9Brauer R. A characterization of the characters of groups of finite order[J]. Ann of Math,1953,57(2):357-377.
  • 10Brauer R, Nesbitt C J. On the modular characters of groups[J]. Ann of Math,1941,2(42):556-590.

引证文献9

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部