期刊文献+

一种应用于人脸识别的有监督NMF算法 被引量:7

A Supervised Non-Negative Matrix Factorization Algorithm for Face Recognition
下载PDF
导出
摘要 为了提高非负矩阵分解(NMF)算法识别率,提出了一种有监督的NMF(SNMF)方法。该算法对NMF基图像进行判别分析,然后选择主要反应类内差异的基图像来构造子空间,最后在子空间上进行识别。通过UMIST人脸库和CMUPIE人脸库上的实验结果表明,该方法对光照、姿态和表情变化具有一定的鲁棒性,识别率高于NMF方法和其它子空间分析法。 A supervised NMF algorithm to enhance the classification accuracy of the NMF algorithm is presented. The method employs discriminant analysis in the features derived from NMF. In this way, intrasubject variation is minimized, while the intersubject variation is maximized feature extraction procedure. Experimental results on public available face databases show that the proposed method has higher recognition rate than NMF and other subspace methods.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2007年第5期622-624,633,共4页 Journal of Optoelectronics·Laser
关键词 人脸识别 子空间 非负矩阵分解(NMF) 线性判别分析 face recognition subspace nor. negative matrix factorization(NMF) linear discriminant analysis
  • 相关文献

参考文献11

  • 1王俊艳,苏光大,林行刚,尚焱.用于人脸识别的多年龄人脸图像合成[J].光电子.激光,2006,17(12):1510-1513. 被引量:7
  • 2杜成,苏光大,林行刚,顾华.改进的线段Hausdorff距离人脸识别方法[J].光电子.激光,2005,16(1):89-93. 被引量:10
  • 3刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 4Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
  • 5Guillamet D,Vitria J,Schiele B.Introducing a weighted non-negative matrix factorization for image classification[J].Pattern Recognition Letters,2003,24(14):2447-2454.
  • 6Lee D D,Seung H S.Algorithms for nonnegative matrix factorization[A].NIPS[C].2000,556-562.
  • 7Feng T,Li S Z,Shum H Y,et al.Local non-negative matrix factorization as a visual representation[A].The 2nd International Conference on Development and Learning[C].2002,178-183.
  • 8Wang Y,Jia Y.Non-negative matrix factorization framework for face recognition[J].International Journal of Pattern Recognition and Artificial Intelligence,2005,19(4):495-511.
  • 9Hoyer P O.Non-negative sparse coding[A].IEEE Workshop on Neural Netw Signal Process,Martigny,Valais[C].2002,557-565.
  • 10Graham D B,Allinson N M.Face recognition:from theory to applications[J].Computer and Systems Sciences,1998,(163):446-456.

二级参考文献88

  • 1杜成,苏光大,林行刚,顾华.改进的用于人脸对准的多尺度ASM方法[J].光电子.激光,2004,15(6):706-709. 被引量:13
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 4Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 5Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 6Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 7Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 8Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 9Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 10Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.

共引文献131

同被引文献83

  • 1宋星光,夏利民,赵桂敏.基于LNMF分解的人脸识别[J].计算机工程与应用,2005,41(5):42-43. 被引量:8
  • 2王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 3庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 4王俊艳,苏光大,林行刚,尚焱.用于人脸识别的多年龄人脸图像合成[J].光电子.激光,2006,17(12):1510-1513. 被引量:7
  • 5祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 6VIOLA P, JONES M. Robust real-time object detection [J]. International Journal of Computer Vision, 2002, 57(2):137-154.
  • 7ZHANG Z, LYONS J M, SCHUSTER M, et al. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perception [C] // Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition. Japan: IEEE Computer Society, 1998:454-459.
  • 8KRESSEL U. Pairwise classification and support vector machines[M] // SCHOLKOPF B, BURGES C J C, SMOLA A J. Advances in Kernel Methods: Support Vector Learning. Cambridge:MIT Press,1999:255-268.
  • 9LITTLEWORT G, BARTLETT M S, FASEL I. Analysis of machine learning methods for real-time recognition of facial expressions from video [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'04). Washington D C:IEEE Computer Society, 2004.
  • 10ZENG X Y, CHEN Y W, NAKAO Z, etal. Texture representations based on pattern maps[J]. Signal Processing, 2004, 84(3) :589-599.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部