期刊文献+

密度泛函理论对CoBe_n(n=1—12)团簇结构和性质的研究 被引量:7

Density functional theory study on the structure and properties of CoBe_n(n=1—12) clusters
原文传递
导出
摘要 采用密度泛函理论中的广义梯度近似(GGA)对CoBen(n=1—12)团簇的几何构型进行优化,并对能量、频率和磁性进行了计算,同时考虑了电子的自旋多重度.得到了CoBen(n=1—12)团簇最低能量结构的自旋多重度是2和4.在CoBen(n=1—12)团簇中,Co原子的磁矩出现了奇偶振荡,当n=6时,Co原子的4s,3d和Be原子的2s,2p较强杂化、Co-Be键长的减小以及对称性的降低导致Co原子的磁矩最小.通过对CoBen(n=1—12)团簇电子性质的分析,得出了掺杂可以增强团簇稳定性和有利于增加合金化学活性的结论.n=5,10是团簇的幻数. Geometric structures of CoBen ( n = 1-12) clusters are optimized using the generalized gradient approximation (GGA) density functional theory. The energy, vibrational frequency and magnetism are calculated. The results indicate that the spin multiplicities of the ground-state clusters are 2 and 4. Furthermore, the investigated magnetic moments confirm that the Co atomic magnetic moments of CoBen ( n = 1-12) clusters display an odd-even oscillation feature. In addition, the Co atomic magnetic moments of CoBe6 is the smallest of all clusters due to the strong hybridization between the 4s, 5d state of Co and 2s, 2p state of Be and short Co-Be average bond distance and low symmetry. By analyzing the properties of electrons, it is concluded that doping of impurity increases the stability and the chemical activity of Be cluster. It is found that CoBe5 and CoBe10 clusters are more stable than the neighboring ones.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第6期3219-3226,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10174086)资助的课题~~
关键词 CoBen 团簇 自旋多重度 磁矩 电子性质 CoBen clusters, spin multiplicities, magnetism, electronic properties
  • 相关文献

参考文献17

  • 1Zheng H P,Hao J A 2005 Chin.Phys.14 0529
  • 2Kratschmer W,Lamb L D,Fostiropoulos K,Huffman D R 1990 Nature 347 354
  • 3Quan H J,Gong X G 2000 Chin.Phys.9 0656
  • 4Castro M,Jamorski C,Salahub D R 1997 Chem.Phys.Lett.271 133
  • 5吕瑾,许小红,武海顺.3d系列(TM)_4团簇的结构和磁性[J].物理学报,2004,53(4):1050-1055. 被引量:12
  • 6Reuse F A,Khanna S N,Bernel S 1995 Phys.Rev.B condens.Matter 52 11650
  • 7罗成林,周延怀,张益.镍原子团簇几何结构的紧束缚方法模拟[J].物理学报,2000,49(1):54-56. 被引量:25
  • 8Pereiro M,Man kovsky S,Baldomir D,Iglesias M,Mlynarski P,Valladares M,Suarez D,Castro M,Arias J E 2001 Comput.Mater.Sci.22 118
  • 9Fan H J,Liu C W,Liao M S 1997 Chem.Phys.Lett.273 353
  • 10Jones N O,Beltran M R,Khanna S N 2004 Phys.Rev.B 70 165406

二级参考文献26

  • 1邓开明,肖传云,杨金龙,龙期威.Ru13原子簇基态的磁性[J].物理学报,1996,45(12):1992-1998. 被引量:1
  • 2Zhao J J, Chen X S, Sun Q et al 1995 Phys. B 215 377.
  • 3Grōinbeck H, Ros N 1997 J. Chem. Phys. 107 10620.
  • 4Ludwig G W, Woodbury H H, Carlson R O 1959 J. Phys. Chem.Solids. 8 490.
  • 5Guo G H, Zhang H B, Levitin R Z 2003 Chin. Phys. 12 655.
  • 6Li W X, Liu B D, Wang J L et al 2003 Chin. Phys. 12 661.
  • 7Reddy B V, Khanna S N, Dunlap B 1 1993 Phys. Rev. Lett. 70 3323.
  • 8Cox A J, Louderback J G, Bloomfield L A 1993 Phys. Rev. Lett.71 923; Cox A J, Louderback J G, Bloomfield L A 1994 Phys.Rev. B 49 12295.
  • 9Liu F, Khanna S N, Jena P 1991 Phys. Rev. B 43 8179.
  • 10Zhao J J, Qiu Q, Wang B L et al 2001 Solid State Commun. 118 157.

共引文献31

同被引文献140

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部