摘要
给出了KdV方程的对数型有限差分格式,利用精确解给出初边值条件;利用Matlab软件编程求出数值解,并与指数型差分格式的数值解进行比较.结果表明,对数型有限差分格式具有精度高且可以长时间稳定计算的优点.
Logarithm finite-difference scheme applied to Korteweg-de Vries equation is given. It' s initial-boundary value conditions are valued by exact solution. Numerical solution of KdV equation using Maflab software is given and the numerical solution of logarithm finite-difference scheme is compared with that of exponentian scheme. The numerical result shows that the scheme of this article has some advantages such as high precision and long computering time.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2007年第2期186-188,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
国家自然科学基金项目(10371111)
郑州轻工业学院校内基金项目(2004XJJ013)
关键词
KDV方程
数值解
有限差分格式
KdV equation
numerical solution
finite-differcence scheme