期刊文献+

具有时变时滞的递归神经网络的渐近稳定性分析 被引量:1

Asymptotical Stability Analysis for Recurrent Neural Networks with Time-Varying Delays
下载PDF
导出
摘要 当神经网络应用于最优化计算时,理想的情形是只有一个全局渐近稳定的平衡点,并且以指数速度趋近于平衡点,从而减少神经网络所需计算时间.研究了带时变时滞的递归神经网络的全局渐近稳定性.首先将要研究的模型转化为描述系统模型,然后利用Lyapunov-Krasovskii稳定性定理、线性矩阵不等式(LMI)技术、S过程和代数不等式方法,得到了确保时变时滞递归神经网络渐近稳定性的新的充分条件,并将它应用于常时滞神经网络和时滞细胞神经网络模型,分别得到了相应的全局渐近稳定性条件.理论分析和数值模拟显示,所得结果为时滞递归神经网络提供了新的稳定性判定准则. When the neural network applies to optimal calculation, the ideal situation is that there is a unique equilibrium point which is globally asymptotically stable and the neural network tends to the equilibrium point. The problem of the globally asymptotical stability of recurrent neural networks with time varying delay is investigated. By transforming the delayed neural model to the describer model and then employing the Lyapunov-Krasovskii stability theorem, linear matrix inequality (LMI) technique, S procedure, and some algebraic inequality method, a new sufficient condition is derived, which is determined by the coefficients of the model and includes more tuning parameters for determining the globally asymptotical stability of recurrent neural networks with time-varying delay. The condition is easily verified numerically by the interior-point algorithm for convex quadratic programming because it can be changed as a set of linear matrix inequalities. The proposed result is further applied to two special cases: cellular neural network model with time delay and recurrent neural networks with constant delays. It is shown by theoretical analysis and computer simulations that the presented results provide several new sufficient conditions for the asymptotical stability of the investigated delayed neural network model.
作者 张忠 李传东
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第6期973-979,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60574024) 重庆市自然科学基金项目(2006BB2228) 教育部新世纪优秀人才支持计划基金项目(NCET-06-0764)~~
关键词 递归神经网络 时变时滞 渐近稳定性 Lyapunov—Krasovskii泛函 线性矩阵不等式(LMI) recurrent neural networks time-varying delay asymptotical stability Lyapunov-Krasovskii functional linear matrix inequality (LMI)
  • 相关文献

参考文献4

二级参考文献44

  • 1廖晓昕.Hopfield型神经网络的稳定性[J].中国科学(A辑),1993,23(10):1025-1035. 被引量:47
  • 2[1]Chua L.O., Yang L.. Cellular neural networks: Theory. IEEE Transactions on CAS-I, 1998, 35(10): 1275~1272
  • 3[2]Roska T., Chua L.O.. Cellular neural networks wit nonlinear and delay-type template. International Journal of Circuit Theory Appl., 1992,22(4): 469~481
  • 4[3]Roska T., Wu C.W., Balsi M., Chua L.O.. Stability and dynamics of delay-type general and cellular neural networks. IEEE Transactions on CAS-I, 1992, 39(6): 487~490
  • 5[4]Roska T., Wu C.W., Chua L.O.. Stability of cellular neural networks with dominant nonlinear and delay-type template. IEEE Transactions on CAS-I, 1993, 40(4): 270~272
  • 6[5]Arik S., Tavsanoglu V.. On the global asymptotic stability of delayed cellular neural networks. IEEE Transactions on CAS-I, 2000, 47(4): 571~574
  • 7[6]Civalleri P.P., Gilli M., Pandolf L.. On stability of cellular neural networks with time delay. IEEE Transactions on CAS-I, 1993, 40(3): 157~165
  • 8[7]Gilli M.. Stability of cellular neural networks and delayed cellular neural networks nonpositive templates and nonmonotonic output functions. IEEE Transactions on CAS-I, 1994, 41(8): 518~528
  • 9[8]Arik S., Tavsanoglu V.. Equilibrium analysis of delayed CNNs. IEEE Transactions on CAS-I, 1998, 45(2): 168~171
  • 10[9]Arik S.. Stability analysis of delayed neural networks. IEEE Transactions on CAS-I, 2000, 47(7): 1089~1092

共引文献27

同被引文献15

  • 1王占山,张化光,吕化.一类延迟神经网络的全局渐近稳定性[J].东北大学学报(自然科学版),2006,27(2):123-126. 被引量:8
  • 2Zhang Hua-guang, Wang Gang. New criteria of global exponential stability for a class of generalized neural networks with time-varying delays[J]. Neurocomputing, 2007, 70(13-15): 2486-2494.
  • 3Rakkiyappan R, Balasubramaniam P. Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays[J]. Applied Mathematics and Computation, 2008, 198(2): 526-533.
  • 4Tian Jun-kang, Zhong Shou-ming. New delay-dependent exponential stability criteria for neural networks with discrete and distributed time-varying delays [J]. Neurocomputing, 2011, 74(17): 3365- 3375.
  • 5Kwon O M, Park J H. Exponential stability for uncertain cellular neural networks with discrete and distributed time-varying delays [J]. Applied Mathematics and Computation, 2008, 203(2): 818-823.
  • 6Shu Zhan, Lam J. Global exponential estimates of stochastic interval neural networks with discrete and distributed delays [J]. Neurocomputing, 2008, 71(13-15): 2950-2963.
  • 7Wang Zi-dong, Fang Jian-an, Liu Xiao-hui. Global stability of stochastic high-order neural networks with discrete and distributed delays[J]. Chaos Solitons Fractals, 2008, 36(2): 388-396.
  • 8Casey M P. The dynam ics of discrete-time computation with application to recurrent neural netw orks and finite statem achine extraction[J]. Neural Com put, 1996, 8(6): 1135-1178.
  • 9Yu Jian-jiang, Zhang Kan-jiang, FEI Shu-ming. Exponential stability criteria for discrete-time re- current neural networks with time-varying delays [J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 207-2113.
  • 10Huang Chuan-xia, He Yong, Huang Li-hong, et al. pth moment stability analysis of stochastic recurrent neural networks with time-varying delays [J]. Information Science, 2008, 178(9): 2194- 2203.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部