期刊文献+

不可压缩N-S方程分步算法稳定性与精度的数值研究 被引量:1

Numerical study on stability and accuracy of the fractional step algorithm for the incompressible N-S equations
下载PDF
导出
摘要 众所周知,LBB条件排除了在不可压缩流动N-S方程空间离散中采用速度u和压力p同阶线性插值的简单单元。基于压力泊松(Poisson)方程的分步算法曾被认为可以绕开LBB条件限制,然而近年来研究表明,并非各种类型的分步算法都能有效地避开LBB条件。本文针对不同雷诺数下的平面Poiseuille流动问题模拟,分析对比了当采用不同类型的u-p单元空间插值时增量与非增量迭代分步算法的稳定性与精度,为合理选择分步算法和u-p插值类型提供了依据和参考。 It is well known that the LBB stability condition precludes the use of elements with the equal low order of interpolation for velocity u and pressure p in the numerical modeling of the incompressible N-S equations. The fractional step algorithm based on the pressure Poisson equation was reported and well recognized to be capable of circumventing the restrictions imposed by the LBB condition. However, the recent work of Guermond indicates that the incremental version of the fractional step algorithm can hardly circumvent the LBB condition with success, and the non-incremental version may work well with equal-order interpolations only if the time step size is chosen to be sufficiently larger than a critical one. In the present paper a numerical study on stability and accuracy of the non-incremental and the incremental versions of the iterative fractional step algorithm is carried out with the plane Poiseuille flow problem under different Reynolds numbers. The results and conclusions obtained by the present study provide some references and instructions in proper use of the fractional step algorithm with a right choice of the u-p interpolation approximations.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2007年第3期275-279,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(1027202710590354)资助项目
关键词 不可压缩N-S方程 H-P插值近似 分步算法 雷诺数 稳定性 精度 incompressible N-S equation u-p interpolation approximations fractional step algorithm Reynolds numbers stability accuracy
  • 相关文献

参考文献11

  • 1ZIENKIEWICZ O C,QU S,TAYLOR R L,et al.The patch test for mixed formulation[J].Int J Numer Methods Engrg,1986,23:1873-1883.
  • 2CHORIN A J.Numerical solution of the NavierStokes equations[J].Mathematics of Computation,1968,22:742-762.
  • 3KAWAHARA M,OHMIYA K.Finite element analysis of density flow using the velocity correction method[J].Int J Numer Methods Fluid,1985,5:981-993.
  • 4DONEA J,GIULIANI S,LAVAL H,et al.Finite element solution of the unsteady Navier-stokes equations by a fractional step method[J].Comput Meths Appl Mech Engrg,1982,30:53-73.
  • 5NITHIARASU P,MATHUR J S,WEATHRILL N P,et al.Three-dimensional incompressible flow calculations using the characteristic based split (CBS) scheme[J].Int J Numer Methods Fluid,2004,44:1207-1229.
  • 6GODA K.A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows[J].J Comput Phys,1979,30:76-95.
  • 7HAWKEN D M,TAMADDON-JAHROMI H R,TOWNSEND P,et al.A Taylor-Galerkin-based algorithm for viscous incompressible flow[J].Int J Numer Methods Fluid,1990,10:327-351.
  • 8GUERMOND J L,MINEV P D.Analysis of a projection-characteristic scheme for incompressible flow[J].Commun Numer Meth Engng,2003,19:535-550.
  • 9PERRON S,BOIVIN S,HERARD J.A finite volume method to solve the 3D Navier Stokes equations on unstructured collocated meshes[J].Comp & Fluid,2004,33:1305-1333.
  • 10GUERMOND J L.On stability and convergence of projection methods based on pressure poisson equation[J].Int J Numer Methods Fluid,1998,26:1039-1053.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部