期刊文献+

基于粗糙集的不完备信息系统统计评判填补方法 被引量:3

A data packing method of statistic judge based on rough sets in incomplete information system
下载PDF
导出
摘要 提出了一种基于粗糙集的不完备信息系统数据填补方法。该方法利用粗糙集中下近似集的性质进行初次数据填补,然后根据属性数据的取值概率函数求出的结果进行二次填补,从而完成对不完备信息系统的完备化处理。采用本方法可以较好地反映信息系统所蕴含的规则,且可以避免信息系统的冲突。当信息系统数据和丢失数据都均匀分布时,填补的数据能反映信息系统的真实状况。 This paper brought forward a data packing method of incomplete information system based on rough sets and grey system theory. This method takes advantage of the lower approximation in rough sets to do the first data packing, and then, according to the value-taking probability of the attribute value, finds the result to do the second packing, thus accomplishes the completion of incomplete information system. This method can adequately reflect the rules and avoid the conflict in information system. When the data in information system and the lost data are evenly distributed, the packing data can reflect the true situation of information system.
作者 张忠林
出处 《计算机应用》 CSCD 北大核心 2007年第6期1385-1387,共3页 journal of Computer Applications
基金 兰州交通大学"青蓝"人才工程基金资助项目(QL-05-10A)
关键词 不完备信息 粗糙集 统计评判 信息填补 incomplete information rough sets statistic judge data packing
  • 相关文献

参考文献17

二级参考文献53

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 3[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 4[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 5[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 6[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 7[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 8Lan Shu,Mo Zhi Wen,Hu Dan. Methods of learning rules based on rough set: LBR and LEM3 [ A ]. IFSA World Congress and 20th NAFIPS International Couference [C]. 2001,2:753 -756.
  • 9Bakar A A,Sulaiman M N,Othman M,et al. Fining minimal reduct with binary integer programming in data mining [A]. TENCON 2000 [C]. 2000,(2) :141 -146.
  • 10Felix R, Ushio T. Rough sets-based machine learning using a binary discernibility matrix [ A ]. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C]. 1999,1:299-305.

共引文献920

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部