期刊文献+

一种优化神经网络结构的遗传禁忌算法 被引量:10

Genetic and tabu search algorithm for the optimization of neural network structure
下载PDF
导出
摘要 常用的神经网络是通过固定的网络结构得到最优权值,使网络的实用性受到影响。引入一种基于方向的交叉算子和禁忌变异算子,同时把禁忌算法(TS)引入标准遗传算法,结合标准遗传算法和禁忌算法的优点,提出一种优化神经网络结构的遗传禁忌混合算法,实现了网络结构和权值同时优化。仿真实验表明,与遗传算法和禁忌算法相比,该算法优化的神经网络收敛速度较快、预测精度较高,提高了网络的处理能力。 A conventional Neural Network often optimizes the weights through invariable network structure, which has limited the extensive use of the Neural Network. The crossover operator based on direction and Tabu search mutation operator was introduced. This paper put forward Genetic and Tabu search algorithm to train the neural networks, combining the merits of genetic algorithm and that of Tabu search algorithm, which makes weights and structure of artificial neural networks be optimized together. The result shows that the neural network optimized by using the presented algorithm has the advantages of quicker convergence rate and higher precision, compared with genetic algorithm and Tabu search algorithm, and that the processing ability of networks is also raised.
出处 《计算机应用》 CSCD 北大核心 2007年第6期1426-1429,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(50077007)
关键词 遗传禁忌算法 神经网络 优化 算子 genetic and tabu search algorithm neural networks optimization operator
  • 相关文献

参考文献6

二级参考文献45

  • 1彭天好,范龙振.BP神经网络的一种稳健改进算法[J].计算机应用研究,1996,13(6):29-30. 被引量:1
  • 2王耀南.一种神经网络的快速学习算法及其在图象边缘检测中的应用[J].计算机研究与发展,1997,34(5):377-381. 被引量:4
  • 3刘光远,邱玉辉,虞厥邦.基于稳健误差估计器的快速BP算法[J].计算机科学,1997,24(2):66-68. 被引量:5
  • 4[3]Miller, G.F,Todd,P.M.and Hedge,S. U. Designing neural networks using genetic algorithms. Proccedings of Third International Conference on Genetic Algorithms, pp. 379 ~ 384,1989.
  • 5[4]Gary G. Yen, Haiming Lu. Hierachical Genetic Algorithm Based on Neural Network Design. IEEE Symposium on Combinations of Evolutionary Computation and Neural Network,2000.
  • 6[5]Goldberg D E. Genetic Algorithms in Search. Optimization & Machine Learning. Addison-Wesley Publishing, 1989.
  • 7[6]M. Srinivas and L. M. Patnaik, Genetic search: analysis using fitness moments, IEEE Transactions on Knowledge and Data Engineering, Volume:8 Issue: 1, Feb. 1996.
  • 8Muhlenbein H. Limitations of multi-layer perception networkssteps forwards genetic neural network [J]. Parallel Computing,1991, (14): 249-260.
  • 9J Moody. Prediction Risk and Architecture Selection for Neural Networks[C].In:V Cherkassky,J Friedman,H Wechsler eds. From Statistics to Neural Networks:Thoery and Pattern Recognition Application,NATO ASI Series F,New York:Springer-Verlag, 1994:136,147-165.
  • 10S E Fahlman, C Lebiere.The Cascade-Correlation Learning Architecture[C].In:D S Tourezky ed.Advances in Neural Information Processing Systerm,San Mateo,CA:Morgan Kaufmann,1990-2002:524-532.

共引文献138

同被引文献102

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部