期刊文献+

基于ICA-MJE和SVM的虹膜特征提取与识别 被引量:3

Feature extraction and recognition of iris based on ICA-MJE and SVM
下载PDF
导出
摘要 提出了一种新的虹膜特征提取与识别方法。对虹膜纹理采用最大判别熵的独立分量分析(ICA-MJE)实现特征提取,通过支持向量机(SVM)完成模式匹配。与Gabor小波的方法比较,在编码长度和编码时间方面有明显地改进。实验结果表明,该算法能更好地提高虹膜的识别率并能够有效地应用于身份识别系统中。 A new method for iris feature extraction and recognition was proposed in this paper. Feature was extracted with independent component analysis by maximizing J-divergence entropy (ICA-MJE), and then Support Vector Machine (SVM) was used to match two iris codes. Compared with that of Gabor wavelet method, the size of an iris code and the processing time of the feature extraction were significantly reduced. Experimental results show that the developed system with high iris recognition rate could be used for a personal identification system in a more efficient and effective manner.
出处 《计算机应用》 CSCD 北大核心 2007年第6期1505-1507,共3页 journal of Computer Applications
关键词 虹膜识别 特征提取 独立分量分析 支持向量机 判别熵 iris recognition feature extraction independent component analysis Support Vector Machine J-divergence entropy
  • 相关文献

参考文献8

  • 1黄雅平,罗四维,陈恩义.基于独立分量分析的虹膜识别方法[J].计算机研究与发展,2003,40(10):1451-1457. 被引量:16
  • 2COMMON P.Independent component analysis a new concept[J].Signal Processing,Elsevier,April 1994,36(3):287-314.
  • 3HYVARINEN A.Independent component analysis applied to feature extraction from contourand stereo images[J].Network:Computation in Neural Systems,2002,11(3) 191 -210.
  • 4GIROLAMI M,FYFE C.Blind separation of sources using exploratory projection pursuit network[A].Spoech and Signal Processing,Int'l Conf.on the Engineering Applications of Neural Networks[C].London,1996.
  • 5HYVARINEN A,OJA E.Independent component analysis:Algorithms and applications[J].Neural Networks,2000,13 (4-5):411 -430.
  • 6AMARI SI,CICHOCKI A,YANG H.A new learning algorithm for blind source separation[A].In:Proc.of Advances in Neural information Processing System[C].Colorado:MIT Press,1996.473 -484.
  • 7CORTES C,VAPNIK V.Support vector networks[J].Machine Learning,1995,20:273 -297.
  • 8SHOLKOPF B,SUNG K,et al.Comparing Support Vector Machine with Baussian Kernels to Radial Basis Function Classifiers[J].IEEE Trans.Signal Processing,1997,45:2758-2765.

二级参考文献11

  • 1P Kronfeld.Gross anatomy and embryology of the eye.In:The Eye.London:Academic Press,1962.
  • 2H M El-Bakry. Human iris detection using fast cooperative modular neural nets neural networks. Proc of Int'l Joint Conf on IJCNN'01, Washington, 2001.
  • 3John Daugrnan. Neural image processing strategies applied in realtime pattern recognition. Real-Time Imaging, 1997, 3(3): 157-171.
  • 4Shinyoung Lim, Kwanyong Lee, Okhwan Byeon, Taiyun Kim. Efficient iris recognition through improvement of feature vector and classifier. ETRI Journal, 2001, 23(2): 61-70.
  • 5L Flom, A Safir. Iris recognition system. U S Patent, 4641349.1987.
  • 6John Daugrnan. High confidence recognition of persons by iris patterns. The 35th Int'l Carnahan Conf on Security Technology, London, 2001.
  • 7John Daugman. High confidence visual recognition of persons by a test statistical independence. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(11) : 1148-1161.
  • 8W W Poles, Boashash. A human identification technique using images of the iris and wavelet transform. IEEE Trans on Signal Processing, 1998, 46(4): 1185-1188.
  • 9R P Wildes, J C Asmuth. A system for automated iris recognition. The 2nd IEEE Workshop on Application of Computer Vision, Sarasoto, 1994.
  • 10A HyvLrinen, E Oja. Independent component analysis: Algorithms and application. Neural Networks, 2000, 13(4/5):411 -430.

共引文献15

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部