期刊文献+

基于规则的故障诊断计算复杂性分析 被引量:1

On Computational Complexity of Rule-based Fault Diagnosis
下载PDF
导出
摘要 由于大量故障的相互作用使得多故障识别及计算量成为故障状态判断的难题。在复杂系统故障诊断中,基于规则的故障诊断特别是专家系统已得到广泛应用。规则数量是诊断精度的关键因素,潜在规则数量直接影响搜索匹配的计算量,其计算量将成为大系统诊断的重要指标。在分析规则构成的基础上,以征兆数量为输入,确定了诊断系统规模判定指标。以汽轮机轴系振动专家系统为例,展示了规则诊断问题的复杂性和诊断规模的确定方法。 What is expected from a diagnosis system is its ability of coping with a large amount of computational work and of identifying a multi-number of faults. Problems arise due to the interaction among different faults. Rule-based fault diagnosis, and especially expert systems, are already widely used in diagnosing faults of complex systems. The number of rules concerned is the dominant factor, affecting diagnosing accuracy, and the number of latent rules has a direct influence on the amount of computational searching and matching work required; which may serve as an important diagnosis index for large systems. Based on the analysis of the rules' build-up and taking the number of symptoms as the input, the scope of rule-based diagnosis is being identified. Exemplified by the scope of an expert system for diagnosing rotor-string vibration of steam turbines, the complexity of rule-based diagnosis and the way of determining the diagnosing scope is demonstrated.
作者 于达仁 王伟
出处 《动力工程》 EI CSCD 北大核心 2007年第3期372-375,共4页 Power Engineering
关键词 自动控制技术 故障诊断 计算复杂性 征兆 规则 系统规模 automatic control technique fault diagnosis computational complexity symptom rule system' s scale
  • 相关文献

参考文献9

  • 1曹立军,王兴贵,秦俊奇,赵阳.融合案例与规则推理的故障预测专家系统[J].计算机工程,2006,32(1):208-210. 被引量:20
  • 2Venkat Venkatasubramanian.A review of process fault detection and diagnosis[J].Computer and chemical engineering,2003(27):293-311.
  • 3Michele Basseville and Igor V.Nikiforov.Detection of Abrupt Changes:Theory and Application.Prentice-Hall[M],Inc.,Simon& Schuster Company,Englewood Cliffs,NJ,1993:6-13.
  • 4蒋浩天(段建民译).工业系统的故障检测与诊断[M].北京:机械工业出版社,2001.
  • 5Puppe F.Knowledge reuse among diagnostic problem-solving methods in the Shell-Kit D3[J].International Journal of Human-computer Studies,1998,49(4):627-649.
  • 6Leo Breiman.Statistical Modeling:The Two Cultures[J].Statistical Science,2001,16(3):199-231.
  • 7Keravnou ET.Temporal diagnostic reasoning based on time-objects[J].Artificial Intelligence in Medicine,1996,8(3):235-265.
  • 8Prasad PR,Davis JF,Jirapinyo Y,et al.Structuring diagnostic knowledge for large-scale process systems[J].Computers & Chemical Engineering,1998,22(12):1897-1905.
  • 9卢学军.汽轮发电机组故障诊断系统中几个关键技术的研究[D].浙江大学博士论文,2002.

二级参考文献4

  • 1Aamodt A, Plaza E. Case-based Reasoning: Foundational Issues,Methodological Variations and System Approaches[J]. AI Communications, 1994, 7 (1): 39-59.
  • 2Corchado J M, Lees B. A Hybrid Case-based Model for Forecasting[J].Applied Artificial Intelligence, 2001, 15 (6): 105-127.
  • 3Smythe B, Keane M. Remember to Forget: a Competence-preserving Case Deletion Policy for Case-based Reasoning Systems[C].International Joint Conference on Artificial Intelligence, 2001:1-16.
  • 4Sun Bo, Xu Lida, Pei Xuemin, et al. Scenario-based Knowledge Representation in Case-based Reasoning Systems[J]. Expert Systems,2003, 20 (2): 92-99.

共引文献19

同被引文献42

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部