期刊文献+

基于D-S证据理论的彩色航空影像阴影提取方法 被引量:27

A New Shadow Extraction Method from Color Aerial Images Based on Dempster-Shafer Evidence Theory
下载PDF
导出
摘要 阴影特征在影像,特别是遥感影像中具有重要的意义.本文针对彩色航空遥感影像的颜色信息进行分析,提出了表述阴影在RGB和HIS空间的三种不同特征,并利用Mean Shift分割的方法对彩色航空影像进行区域分割.选取分割后的区域,统计每个区域的多个颜色特征并定义相应的概率分配函数,利用其互补特性,使用Dempster-Shafer(D-S)证据理论中的合成法则对其进行合成,最终判别区域是阴影或非阴影.对实验图像进行阴影特征提取,取得了较好的效果. Shadows play an important role in our understanding of imagery especially the remote sensing imagery. According to the color features of shadow in the color aerial images, a new approach is proposed to extract shadow from color, aerial images based on the Dempster-Shafer (D-S) evidence theory. Firstly three different feature descriptions of shadow in RGB and HIS spaces are introduced, then the image is segmented based on Mean Shift method, the color features of the segmented regions are computed and the basic probability assignment function (BPAF) of each segment is defined respectively. By using of the complementary characteristics of such three color features, the D-S rule is applied to the fusion of BPAF. Finally, the BPAF fusion is utilized to find the conclusive shadow segments. Experimental image analysis results demonstrate that the proposed method is effective and robust.
出处 《自动化学报》 EI CSCD 北大核心 2007年第6期588-595,共8页 Acta Automatica Sinica
基金 国家自然科学基金(40671158) 新世纪优秀人才支持计划(NCET-05-0626)资助~~
关键词 Dempster-Shafer(D-S)证据理论 阴影提取 彩色航空影像 Dempster-Shafer(D-S) theory of evidence, shadow extraction, color aerial image
  • 相关文献

参考文献24

  • 1Mikic I,Trivedi M M,Cucchiara R.Detecting moving shadows:algorithms and evaluation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7):918~923
  • 2Massalabi A,He D C,Benie G B,Beaudry E.Detecting informationunder and from shadow in panchromatic Ikonos images of the city of Sherbrooke.In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Anchorage,Alaska,USA,IEEE,2004.2000~2003
  • 3Polidorio A M,Flores F C,Imai N N,Tommaselli A M G,Franco C.Automatic shadow segmentation in aerial color images.In:Proceedings of the ⅩⅥ Brazilian Symposium on Computer Graphics and Image Processing.Sao Carlos,Brazil,IEEE,2003.270~277
  • 4Yao J,Zhang Z.Hierarchical shadow detection for color aerial images.Computer Vision and Image Understanding,2006,102(1):60~69
  • 5Li Y,Sasagawa T,Gong P.A system of the shadow detection and shadow removal for high resolution city aerial photo.In:Proceedings of ISPRS Congress.Istanbu,Turkey,ISPRS,2004.802~807
  • 6杨益军,赵荣椿,汪文秉.航空图像中阴影区域的检测[J].信号处理,2002,18(3):228-232. 被引量:17
  • 7Tsai V J D.A comparative study on shadow compensation of color aerial images in invariant color models.IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1661~1671
  • 8郭海涛,徐青,张保明.多重约束下的建筑物阴影提取[J].武汉大学学报(信息科学版),2005,30(12):1059-1062. 被引量:17
  • 9Salvador E,Cavallaro A,Ebrahimi T.Cast shadow segmentation using invariant color features.Computer Vision and Image Understanding,2004,95(2):238~259
  • 10Jianjun H,Weixin X,Liang T.Detection of and compensation for shadows in colored urban aerial images.In:Proceedings of the Fifth World Congress on Intelligent Control and Automation.Hangzhou,China,IEEE,2004.3098~3100

二级参考文献66

  • 1梅雪良,张祖勋,张剑清.基于约束满足网络的建筑物阴影结构提取[J].武汉测绘科技大学学报,1996,21(3):265-268. 被引量:6
  • 2[1]Barnes N. And Liu Z.Q., knowledge-based shape from shading. Int. of. of Pattern recognition and Artificial Intelligence, 1999, 13(1)1~23.
  • 3[2]Ortega A. and shah M., From shape from shading to object recognition, Int. of. of P-attern Recognition and Artificial Intelligence, 1998, 12(2):191~208.
  • 4[3]J.B. Thirion. Realistic 3D simulatron of shapes and shadows for image processing, CVGIP, 1992,54(1)82~90.
  • 5[4]C.Wang, L. Huang,and A.Rosenfeld. Detecting clouds and cloud shadows on aerial photographd, PRL, 1991, 12(1): 55-64.
  • 6[5]A. Huertas and R. Nevatia, Detecting Buildings in Aerial Images, CVGIP, 1988, 41 (1): 131~152.
  • 7[6]Feng L. Suen C. Y., Tang Y.Y. and Yang L.H. Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels. Int. J.of Pattern Recognition and Artificial Intelligence,2000,14(6): 779~793.
  • 8[7]Cheng H. D., Y.H. Chen, and X.H. Jiang. Thresholding using two-dimensional histogram and fuzzy entropy principle. T-IP,2000,9(4):732~725.
  • 9[8]Fu Chang, Ya-Ching Lu, and T. Pavlidis. Feature Analysis using line sweep thinning algorethm, T-PAMI, 1999,21(2): 145~158.
  • 10[1]Puissant A,Weber C.Les Potentialités des Images a Très Haute Résolution Spatiale pour la Reconnaissance des Composantes Urbaines[A]. Télédétection a très haute résolution spatiale et analyse d'image[C].Montpellier,1999.

共引文献137

同被引文献234

引证文献27

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部