摘要
利用加权鞅Hardy空间的原子分解,证明了加权Lorentz鞅空间上的几个内插定理.应用内插定理给出了鞅变化算子的一些不等式.
出处
《中国科学(A辑)》
CSCD
北大核心
2007年第6期641-650,共10页
Science in China(Series A)
基金
国家自然科学基金(批准号:10671147)
参考文献17
-
1Stein E M, Weiss G. Interpolation of operators with change of measures. Trans Amer Math Soc, 87: 159-172 (1958)
-
2Calderon A P. Spaces between L1 and L∞ and the theorem of Marcinkiewicz. Studia Math, 26:273-299 (1966)
-
3Hunt R A. On L(p,q) spaces. Enseign Math, 12:249-276 (1966)
-
4Ferreyra E V. On a negative result concerning interpolation with change of measures for Lorentz spaces. Proc Amer Math Soc, 125:1413-1417 (1997)
-
5Asekritova I, Krugljak N, Maligranda L, et al. Lions-Peetre reiteration formulas for triples and their applications. Studia Math, 145(3): 219-254 (2001)
-
6Martin J, Milman M. Weighted norm inequalities and indices. J Funct Spaces Appl, 1(4): 43-71 (2006)
-
7Bastero J, Milman M, Ruiz F J. On the connection between weighted norm inequalities, commutators and real interpolation. Mere Amer Math Soc, 2001, 731
-
8Rakotondratsimba Y. On the boundedness of classical operator on weighted Lorentz spaces. Georgian Math J, 2:177-200 (1998)
-
9Martin J, Soria J. New Lorentz spaces for the restricted weak-type Hardy's inequalities. J Math Anal Appl, 281:138-152 (2003)
-
10Mastylo M. Interpolative construction and the generalized cotype of abstract Lorentz spaces. J Math Anal Appl, 319:460-474 (2006)
二级参考文献9
-
1Pisier G. Martingales àValeurs Dans les Espaces Uniformement Convexes. Handwritten Mimeographed Notes, EcolePolytechnique, Paris, 1974
-
2Woyczynski W A. Geometry and Martingales in Banach Spaces. Lecture Notes inMathematics, Vol 472. Berlin: Springer-Verlag, 1975. 229~275
-
3Coifman R R. A real variable characterization of Hp. Studia Math, 1974, 51: 269~274
-
4HerzCS.Hp-spacesofmartingales,0p≤1.ZWahrsVerwGeb,1974,28:189-205
-
5Bermard A, Muisonneuve B. Decomposition Atomique de Martingale de la ClassH1.Lecture Notes in Mathematics, Vol 581. Berlin: Springer-Verlag, 1977. 303~323
-
6Weisz F. Martingale Hardy Space and their Applications in Fourier Analysis. LectureNotes in Mathematics, Vol 1568. Berlin: Springer-Verlag, 1994
-
7Kwapien S. Isomorphic charaterizations of inner product spaces by orthogonal serieswith vector valued coefficients. Studia Math, 1972, 44: 583~595
-
8刘培德,侯友良.Banach空间值鞅的原子分解[J].中国科学(A辑),1998,28(10):884-892. 被引量:14
-
9刘培德.鞅空间与Banach空间的几何性质[J].中国科学(A辑),1990,21(7):694-704. 被引量:8
共引文献17
-
1张传洲,翟富菊.复测度B值鞅的原子分解[J].数学杂志,2005,25(2):231-236. 被引量:2
-
2王秀兰,刘云.几类B值小指标鞅空间的原子分解[J].数学杂志,2006,26(5):529-536.
-
3任颜波,侯友良.Banach空间值鞅上的拟局部算子[J].数学杂志,2007,27(6):725-730. 被引量:2
-
4金雁鸣.鞅的Φ-原子分解与鞅的凹Φ-不等式[J].应用数学,2008,21(1):52-58.
-
5王俊俊,黄堃.B值弱Hardy拟鞅的原子分解[J].平顶山学院学报,2008,23(2):72-75.
-
6殷樱,于林.向量值弱鞅空间的原子分解及其嵌入关系[J].河南师范大学学报(自然科学版),2009,37(1):5-8.
-
7王俊俊,侯友良.几类B值拟鞅空间上的原子分解[J].应用泛函分析学报,2009,11(1):39-46. 被引量:2
-
8殷樱,于林.鞅算子及其生成的向量值弱Hardy鞅空间的原子分解[J].江西师范大学学报(自然科学版),2009,33(2):231-236.
-
9于林,殷樱.鞅空间的原子分解与有限鞅的稠密性[J].纯粹数学与应用数学,2009,25(3):417-424.
-
10于林.B-值鞅的原子分解在内插理论中的一个应用[J].应用数学,1999,12(3):114-117. 被引量:1
同被引文献7
-
1Herz C. Hp-space of martingales, 0 < p ~< 1. Z Wahrs Verw Geb, 1974, 28:189-205.
-
2Weisz F. Martingale Hardy Spaces and Their Applications in Fourier Analysis. Berlin: Springer-Verlag, 1994.
-
3Jiao Y, Peng L H, Liu P D. Atomic decompositions of Lorentz martingale spaces and applications. J Funct Spaces Appl, 2009, 7:153-166.
-
4Hou Y L, Ren Y B. Vector-valued weak martingale Hardy spaces and atomic decompositions. Acta Math Hungar, 2007, 115:235-246.
-
5Garling D J H. Random martingale transform inequalities. Probability in Banach Spaces 6. Denmark: Sandbjerg, 1986, 101-119.
-
6刘培德,侯友良.Banach空间值鞅的原子分解[J].中国科学(A辑),1998,28(10):884-892. 被引量:14
-
7张传洲,张学英.二维Vilenkin型系统的Dirichlet核的加权平均[J].中国科学:数学,2010,40(6):593-602. 被引量:1
-
1张传洲.维林肯-傅里叶级数的(C,α)核(英文)[J].应用泛函分析学报,2008,10(3):228-233.
-
2范利萍,焦勇,刘培德.LORENTZ MARTINGALE SPACES AND INTERPOLATION[J].Acta Mathematica Scientia,2010,30(4):1143-1153. 被引量:7
-
3Yong JIAO,Wei CHEN,Pei De LIU.Interpolation on Weak Martingale Hardy Space[J].Acta Mathematica Sinica,English Series,2009,25(8):1297-1304. 被引量:3
-
4张传洲,张学英.d维p-级数域特征系统的(C,α)均值估计(英文)[J].数学杂志,2010,30(1):75-81. 被引量:1
-
5孟维维,于林.鞅Hardy空间与Hardy-Orlicz空间的鞅变换[J].数学物理学报(A辑),2010,30(6):1523-1527. 被引量:2
-
6金雁鸣.次正规条件下0<p≤1时的鞅Hardy空间[J].湖北大学学报(自然科学版),2001,23(2):99-102.
-
7于林.鞅Hardy空间理论[J].三峡大学学报(自然科学版),2001,23(6):564-569.
-
8孟维维,于林.鞅Hardy空间与Hardy-Orlicz空间的相互关系[J].三峡大学学报(自然科学版),2009,31(5):105-108.
-
9陈丽红,张传洲.弱鞅Hardy空间的二进导数(英文)[J].数学杂志,2007,27(3):261-266.
-
10于林,殷樱.鞅空间的原子分解与有限鞅的稠密性[J].纯粹数学与应用数学,2009,25(3):417-424.