期刊文献+

加权Lorentz鞅空间上的内插定理 被引量:1

原文传递
导出
摘要 利用加权鞅Hardy空间的原子分解,证明了加权Lorentz鞅空间上的几个内插定理.应用内插定理给出了鞅变化算子的一些不等式.
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第6期641-650,共10页 Science in China(Series A)
基金 国家自然科学基金(批准号:10671147)
  • 相关文献

参考文献17

  • 1Stein E M, Weiss G. Interpolation of operators with change of measures. Trans Amer Math Soc, 87: 159-172 (1958)
  • 2Calderon A P. Spaces between L1 and L∞ and the theorem of Marcinkiewicz. Studia Math, 26:273-299 (1966)
  • 3Hunt R A. On L(p,q) spaces. Enseign Math, 12:249-276 (1966)
  • 4Ferreyra E V. On a negative result concerning interpolation with change of measures for Lorentz spaces. Proc Amer Math Soc, 125:1413-1417 (1997)
  • 5Asekritova I, Krugljak N, Maligranda L, et al. Lions-Peetre reiteration formulas for triples and their applications. Studia Math, 145(3): 219-254 (2001)
  • 6Martin J, Milman M. Weighted norm inequalities and indices. J Funct Spaces Appl, 1(4): 43-71 (2006)
  • 7Bastero J, Milman M, Ruiz F J. On the connection between weighted norm inequalities, commutators and real interpolation. Mere Amer Math Soc, 2001, 731
  • 8Rakotondratsimba Y. On the boundedness of classical operator on weighted Lorentz spaces. Georgian Math J, 2:177-200 (1998)
  • 9Martin J, Soria J. New Lorentz spaces for the restricted weak-type Hardy's inequalities. J Math Anal Appl, 281:138-152 (2003)
  • 10Mastylo M. Interpolative construction and the generalized cotype of abstract Lorentz spaces. J Math Anal Appl, 319:460-474 (2006)

二级参考文献9

  • 1Pisier G. Martingales àValeurs Dans les Espaces Uniformement Convexes. Handwritten Mimeographed Notes, EcolePolytechnique, Paris, 1974
  • 2Woyczynski W A. Geometry and Martingales in Banach Spaces. Lecture Notes inMathematics, Vol 472. Berlin: Springer-Verlag, 1975. 229~275
  • 3Coifman R R. A real variable characterization of Hp. Studia Math, 1974, 51: 269~274
  • 4HerzCS.Hp-spacesofmartingales,0p≤1.ZWahrsVerwGeb,1974,28:189-205
  • 5Bermard A, Muisonneuve B. Decomposition Atomique de Martingale de la ClassH1.Lecture Notes in Mathematics, Vol 581. Berlin: Springer-Verlag, 1977. 303~323
  • 6Weisz F. Martingale Hardy Space and their Applications in Fourier Analysis. LectureNotes in Mathematics, Vol 1568. Berlin: Springer-Verlag, 1994
  • 7Kwapien S. Isomorphic charaterizations of inner product spaces by orthogonal serieswith vector valued coefficients. Studia Math, 1972, 44: 583~595
  • 8刘培德,侯友良.Banach空间值鞅的原子分解[J].中国科学(A辑),1998,28(10):884-892. 被引量:14
  • 9刘培德.鞅空间与Banach空间的几何性质[J].中国科学(A辑),1990,21(7):694-704. 被引量:8

共引文献17

同被引文献7

  • 1Herz C. Hp-space of martingales, 0 < p ~< 1. Z Wahrs Verw Geb, 1974, 28:189-205.
  • 2Weisz F. Martingale Hardy Spaces and Their Applications in Fourier Analysis. Berlin: Springer-Verlag, 1994.
  • 3Jiao Y, Peng L H, Liu P D. Atomic decompositions of Lorentz martingale spaces and applications. J Funct Spaces Appl, 2009, 7:153-166.
  • 4Hou Y L, Ren Y B. Vector-valued weak martingale Hardy spaces and atomic decompositions. Acta Math Hungar, 2007, 115:235-246.
  • 5Garling D J H. Random martingale transform inequalities. Probability in Banach Spaces 6. Denmark: Sandbjerg, 1986, 101-119.
  • 6刘培德,侯友良.Banach空间值鞅的原子分解[J].中国科学(A辑),1998,28(10):884-892. 被引量:14
  • 7张传洲,张学英.二维Vilenkin型系统的Dirichlet核的加权平均[J].中国科学:数学,2010,40(6):593-602. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部