期刊文献+

基于模糊概率赋值的新型贝叶斯异常检测模型 被引量:1

A Novel Bayesian Anomaly Detection Model Using Fuzzy Probability Assignment
下载PDF
导出
摘要 提出了一种结合模糊决策与贝叶斯方法的异常检测模型,该模型将系统中与安全相关的事件进行分类,并以模糊隶属度函数的形式给出各类事件发生异常的实时置信度。异常检测系统综合某时刻所有实时概率取值,做出贝叶斯决策。同简单使用阈值方法的贝叶斯入侵检测模型相比,采用了模糊概率赋值的贝叶斯异常检测模型,在提高对问题描述的精确性同时,由于它对多种类型安全相关事件提供支持而具有更好的适应性,可以更全面地对更复杂的系统行为进行建模。 To enhance the intrusion detection system with more accuracy and less false positive rate while still providing acceptable performance and adaptability, a Bayesian anomaly intrusion detection system using fuzzy probability assignment is presented in the paper. After categorizing the security related system events and properties into four models, which are represented by their corresponding fuzzy membership functions, the real- time probability of a specific security event will be calculated as according to the fuzzy membership function of the model it belongs to and a decision whether the supervised system is in a abnormal state is thus made from the synthesized probabilities of all these registered security events. Two separate algorithms, namely simple probability algorithm and Bayesian belief network algorithm, are provided in combining with the real-time fuzzy probabilities calculated. Simulations with a group of fine tuned coefficients prove the effectiveness of the two algorithms. Compared with previous work that employs the simple threshold methods in judging security related system events, the fuzzy approach suggested describes the probabilities of security events more accurately through utilizing the continuous fuzzy probability model and scales better as well for modeling various kinds of security related system properties in normal system behavior profiling.
作者 金舒 刘凤玉
出处 《中国工程科学》 2007年第6期58-63,共6页 Strategic Study of CAE
基金 国家自然科学基金资助项目(60273035)
关键词 入侵检测系统 异常检测 模糊概率赋值 贝叶斯置信网络 IDS anomaly detection fuzzy probability assignment Bayesian belief network
  • 相关文献

参考文献9

  • 1Kemmerer R A,Vigna G.Intrusion detection:a brief history and overview[J].Computer,2002,35(4):27-30
  • 2Debar H,Dacier M,Wespi A.A revised taxonomy for intrusion detection systems[J].Annales des Telecommunications,2000,55(7):361~378
  • 3Mitchell T M.Machine Learning[M].New York:McGrall-Hill Press,1997
  • 4Duda R O,Hart P E,Stork D G.Pattern Classificalion[M].New Jersey:Wiley Press,2000
  • 5Kruegel C,Mutz D,Robertson W,et al.Bayesian event classification for intrusion detection[A].Proceedings of 19th Annual Computer Security Applications Conference[C].2003
  • 6Sebyala A A,Olukemi T,Sacks L.Active platform security through intrusion detection using naive bayesian network for anomaly detection[A].Proceedings of the London Communications Symposium[C].London,2002
  • 7Puttini R S,Marrakchi Z,Me L.A bayesian classification model for real-time intrusion detection[A].AIP Conference Proceedings Vol 659[C].2003.150~162
  • 8张琨,徐永红,王珩,刘凤玉.用于入侵检测的贝叶斯网络[J].小型微型计算机系统,2003,24(5):913-915. 被引量:8
  • 9罗光春,卢显良,李炯,张骏.一种基于贝叶斯判决的先进入侵检测模型[J].计算机科学,2003,30(8):50-51. 被引量:2

二级参考文献9

  • 1杨正光 吴岷 张晓莉.模式识别[M].中国科学技术大学出版社,2002..
  • 2Oiarratano J, Riley O. Expert Systems Principles and Programruing. PWS Publishing Company, 1998.
  • 3Stevens W R. Unix Network Programming Networking APIs: Sockets and XTI. Prentice Hall PTR.
  • 4Satyanarayananan M,Kistler 3 3:Kumar P,et al. Coda: A Highly Available File System for a Distributed Workstation. IEEE Transactions on Computers, 1990,39 (4).
  • 5Papadopoulos G A, Arbab F. Coordination Models and Languages. Advances in Computers. Academic Press, 1998.
  • 6Russell S J, Norvig P. Artificial Intelligence. Prentice Hall,New Jersey, 1995.
  • 7Ford K M,Coffey J W,Andrews E J. Diagnosis and explanation by a nuclear cardiologu expert system. Internatioal Journal of Expert System, 1996,8(4).
  • 8孙即祥.现代横式识别[M].国防科技大学出版社,2002..
  • 9蒋建春,马恒太,任党恩,卿斯汉.网络安全入侵检测:研究综述[J].软件学报,2000,11(11):1460-1466. 被引量:370

共引文献8

同被引文献12

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部