期刊文献+

基于误差预测修正的负荷预测研究 被引量:9

Research on Load Forecasting Based on Predicted Error Amendment
原文传递
导出
摘要 电力系统负荷预测对电力系统的可靠和经济运行意义重大。国内外学者对负荷预测理论做了大量研究,提出了许多预测方法。基于这些方法,提出了一种有辅助和修正作用的措施——误差预测修正,即通过对预测产生的误差进行预测和分析,形成预测修正模型,再结合原预测模型预测负荷,以扩大原模型的适用范围和提高它的预测精度。最后通过算例,验证了该方法的科学性和实用性。 Load forecasting is significant to the stable and economical running of power system. The theory of load forecasting has been researched for a long time, and a lot of forecasting methods are proposed. Based on these methods, an assistant and amendatory measure called Predicted Error Amendment is proposed. A forecasting amendment model is established by analyzing the predicted errors. The coverage is enlarged and the forecasting precision is improved by forecasting load with the original predicted model. The rationality and practicability of this method are proved by an example.
出处 《现代电力》 2007年第3期11-15,共5页 Modern Electric Power
关键词 负荷预测 电力系统 预测方法 误差预测修正 误差预测修正模型 load forecasting power system forecasting methods predicted error amendment forecasting amendment model
  • 相关文献

参考文献8

二级参考文献27

  • 1牛东晓,陈志业.交叉灰色预测法预测发电设备可靠性指标[J].中国电机工程学报,1993,13(4):25-30. 被引量:11
  • 2邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1988.1-162.
  • 3Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 4Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 5Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 6Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 7Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 8Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 9Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.
  • 10Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997.

共引文献397

同被引文献65

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部